
Instructor: Dr. Heather Guarnera
TAs: TBA

Administrative info:
• Course website
• Book
• Syllabus
• Moodle

This course serves two purposes:
• Design and analyze algorithms
• Prepare for Senior IS

CS 200: Algorithm Analysis

Versions of the book…

4th edition
We are using this one

3rd edition 2nd edition

It is available online for free
through College of Wooster

libraries

Introduction
CLRS 1.1 & 1.2

Example: Boss assigns a task

• Given today’s prices of pork, grain, sawdust, etc…
• Given constraints on what constitutes a hotdog.
• Make the cheapest hotdog.

• Mundane programmer: “Um? Tell me what to code.”
• Better: “I learned an algorithm that will work.”
• Best: “I can develop an algorithm for you.”

Every industry asks these questions.

How to do this?

4

5

Tools you need

6

Example: Design an inventory system which can quickly find an item.
• What data structure to use?

stack

linked list

queue

array

tree
hash table

graph

7

Example: Design an inventory system which can quickly find an item.

linked list

array

hash table

• What approach to take?

• Are there any existing algorithms
that could be used/modified?

Brute force
Dynamic programming

Divide and conquer
Greedy method

Prune and search

Tools you need

8

Example: Design an inventory system which can quickly find an item.
• How to determine which solution is best?

Rationalization
Proof of correctness

• Does it work as required?

• How much memory is required? How
long does it take?

Big-oh notation
Amortization

Complexity analysis

linked list

array

hash table

Tools you need

Algorithm Analysis

• How to evaluate algorithms (correctness, complexity)
• Notations and abstractions for describing algorithms

• Advanced data structures and their analysis

• Fundamental techniques to solve the vast array of unfamiliar problems
that arise in a rapidly changing field
• Up to date grasp of fundamental problems and solutions
• Approaches to solve

• To think algorithmically like a ‘real’ computer scientist

9

Course Content

• A list of algorithms
• Learn the code
• Trace them until you are convinced that they work
• Implement them.

class InsertionSortAlgorithm extends SortAlgorithm {
void sort(int a[]) throws Exception {

for (int i = 1; i < a.length; i++) {
int j = i;
int B = a[i];
while ((j > 0) && (a[j-1] > B)) {
a[j] = a[j-1];
j--; }

a[j] = B;
}

}

10

Course Content
• A survey of algorithmic design techniques
• Abstract thinking
• How to develop new algorithms for any problem that may arise

11

Start with some math

12

Time complexity
as a function

t(n) = Q(n2)

Classifying functions

Input Size
Ti

m
e

Counting primitive operations
• Sequences and summations
• Linear functions
• Logarithmic and exponential functions

Recurrence Relations

T(n) = a T(n/b) + f(n)

Data Structures

13

linked list

vector
hash table

&
dictionaries

graph

stack

top

queue
front rear

A

B C

K LE

F I

D

H G

tree

J

6

2 8

7 91 4

5

binary search tree
3

6

2 8

7 91 4

5

red black tree
3 1

3 2

4 67 5

heap
&

priority queues

8 9

Searching & Sorting

14

insertion sort selection sort heap sort merge sort quick sort

7

1 8

5

9

4

3

626

2 8

7 91 4

53

Fundamental Techniques

15

Greedy Algorithms Divide and Conquer

Dynamic Programming

Graph algorithms

16

Graph search

Shortest path
Minimum Spanning Tree

Useful Learning Techniques

• You are expected to read ahead (before class)
• This will facilitate more productive discussion during class
• Plicker questions will be based on assigned reading

• Guess at potential algorithms for solving a problem
• Look for input instances where your algorithm is wrong

• Practice explaining
• You’ll be tested on your ability to explain material

• Ask questions
• Why is it done this way and not that way?

17

Each student will undertake a major individual computer science project in the context of
a particular application of interest to the student.
• Written component, software component, presentation
• Should include algorithm analysis
• Cover methods/topics not covered

The purpose is to prepare you for the process of Senior IS

Some previous topics have included:
• Image / handwriting recognition
• P vs. NP
• Path finding applications
• Procedural generation

Applications in a wide variety of areas: Junior IS

18

