Fellow travelers phenomenon in real-world networks and applications

Heather M. Guarnera

The College of Wooster

Why graph networks?

Graphs are everywhere

Graphs are everywhere

Utility Patent network 1972-1999
(3 Million patents)

Graphs are everywhere

Graphs are everywhere

Graphs are everywhere

What is Fellow Travelers Phenomenon?

(Interval) Thinness of graphs

For any two x, y vertices on a graph $I(x, y)=\{z \in V: d(x, y)=d(x, z)+d(z, y)\}$ denotes the (metric) interval, i.e., all vertices that lay on a shortest path between x and y.

(Interval) Thinness of graphs

For any two x, y vertices on a graph $I(x, y)=\{z \in V: d(x, y)=d(x, z)+d(z, y)\}$ denotes the (metric) interval, i.e., all vertices that lay on a shortest path between x and y.

(Interval) Thinness of graphs

For any two x, y vertices on a graph $I(x, y)=\{z \in V: d(x, y)=d(x, z)+d(z, y)\}$ denotes the (metric) interval, i.e., all vertices that lay on a shortest path between x and y .

The set $S_{p}(x, y)=\{z \in I(x, y): d(z, x)=p\}$ is called a slice of the interval from x to y .

$$
S_{0}(x, y) \quad S_{1}(x, y) \quad S_{3}(x, y) \quad S_{4}(x, y)
$$

$$
S_{2}(x, y)
$$

(Interval) Thinness of graphs

For any two x, y vertices on a graph $I(x, y)=\{z \in V: d(x, y)=d(x, z)+d(z, y)\}$ denotes the (metric) interval, i.e., all vertices that lay on a shortest path between x and y .

The set $S_{p}(x, y)=\{z \in I(x, y): d(z, x)=p\}$ is called a slice of the interval from x to y .
An interval $I(x, y)$ is said to be $\boldsymbol{\kappa}$-thin if any two vertices u, v of the slice $S_{p}(x, y)$ are at most κ apart, where integer p satisfies $0 \leq p \leq d(x, y)$.

Ex: $I(x, y)$ is 2-thin.

The smallest value κ for which all intervals of G are κ-thin is the thinness of the graph, denoted $\boldsymbol{\kappa}(\boldsymbol{G})$.
$\boldsymbol{\kappa}(\boldsymbol{G})$ is a small constant in many real-world networks!

Ex: Protein Interaction Network

nodes $n=1,870$ proteins edges $m=2240$ direct physical interactions between proteins
$\boldsymbol{\kappa}(\boldsymbol{G}) \leq 7$

Ex: Other real-world networks with small thinness

- Social networks (subset of Facebook)
- nodes $n=293,501$ users
$\kappa(G) \leq 7$
- edges $m=5,589,802$ friendships between users
- Web networks (from Google)
- nodes $n=855,802$ websites
- edges $m=4,291,352$ hyperlinks connecting sites
- Peer-to-peer networks (Gnutella)
- nodes $n=62,561$ hosts
- edges $m=147,878$ connections between hosts

$\boldsymbol{\kappa}(\boldsymbol{G}) \leq \mathbf{4}$

$\boldsymbol{\kappa}(\boldsymbol{G}) \leq 5$

Fellow travelers phenomenon is attributed to the negative curvature of the graph

Geometric characteristics of real-world networks

- Surge of recent empirical and theoretical work analyzes geometric characteristics
- One important property: negative curvature
- causes traffic between vertices to pass through a relatively small core of the network - as if the shortest paths between them were curved inwards
- measured in many different (somewhat equivalent) ways

Zero Curvature

Negative Curvature

Geometric characteristics of real-world networks

- Surge of recent empirical and theoretical work analyzes geometric characteristics
- One important property: negative curvature
- causes traffic between vertices to pass through a relatively small core of the network - as if the shortest paths between them were curved inwards
- measured in many different (somewhat equivalent) ways
- Measures of negative curvature
- κ Interval thinness
- τ Geodesic triangle thinness
- δ Gromov Hyperbolicity
- ऽ Slimness
- 1 Rooted Insize

δ-Hyperbolicity

Definition (Gromov's 4-point condition)
For any four points u, v, w, x, the two larger of the distance sums $d(u, v)+d(w, x), d(u, w)+d(v, x)$, $d(u, x)+d(v, w)$ differ by at most $2 \delta \geq 0$.

ס-Hyperbolicity

Definition (Gromov's 4-point condition)
For any four points u, v, w, x, the two larger of the distance sums $d(u, v)+d(w, x), d(u, w)+d(v, x)$, $d(u, x)+d(v, w)$ differ by at most $2 \delta \geq 0$.

δ-Hyperbolicity

Definition (Gromov's 4-point condition)
For any four points u, v, w, x, the two larger of the distance sums $d(u, v)+d(w, x), d(u, w)+d(v, x)$, $d(u, x)+d(v, w)$ differ by at most $2 \delta \geq 0$.

ס-Hyperbolicity

Definition (Gromov's 4-point condition)
For any four points u, v, w, x, the two larger of the distance sums $d(u, v)+d(w, x), d(u, w)+d(v, x)$, $d(u, x)+d(v, w)$ differ by at most $2 \delta \geq 0$.

Example:

$$
\begin{aligned}
& d(u, v)+d(w, x)=2 \\
& d(u, w)+d(v, x)=2 \\
& d(u, x)+d(v, w)=4 \\
& \text { So, } \delta=\frac{4-2}{2}=1
\end{aligned}
$$

Take any quadruple of vertices and these 3 distances sums.
$2 \delta \geq$ LargestSum - MiddleSum

Relation of interval thinness to hyperbolicity

δ-Hyperbolicity measures how close (locally) a metric space is to a tree from a metric point of view; the smaller the value indicate

- is metrically closer to a tree ($\delta=0$ in a tree)
- has global negative curvature

Lemma (Fellow travelers property): For any graph $G, \kappa(G) \leq 2 \delta(G)$.

Relation of interval thinness to hyperbolicity

Lemma (Fellow travelers property): For any graph $\mathrm{G}, \mathrm{K}(\mathrm{G}) \leq 2 \delta(\mathrm{G})$.

Proof:

Let $x, y \in V$, and let u, v belong to the same slice of the interval $I(x, y)$. Consider the 3 distance sums between these 4 vertices.

$$
\begin{aligned}
& d(x, u)+d(v, y) \\
& d(x, v)+d(u, y) \\
& d(x, y)+d(u, v)
\end{aligned}
$$

Relation of interval thinness to hyperbolicity

Lemma (Fellow travelers property): For any graph $\mathrm{G}, \mathrm{K}(\mathrm{G}) \leq 2 \delta(\mathrm{G})$.

Proof:

Let $x, y \in V$, and let u, v belong to the same slice of the interval $I(x, y)$. Consider the 3 distance sums between these 4 vertices.

$$
\begin{aligned}
& d(x, u)+d(v, y)=d(x, y) \\
& d(x, v)+d(u, y) \\
& d(x, y)+d(u, v)
\end{aligned}
$$

Relation of interval thinness to hyperbolicity

Lemma (Fellow travelers property): For any graph $\mathrm{G}, \mathrm{K}(\mathrm{G}) \leq 2 \delta(\mathrm{G})$.

Proof:

Let $x, y \in V$, and let u, v belong to the same slice of the interval $I(x, y)$. Consider the 3 distance sums between these 4 vertices.

$$
\begin{aligned}
& d(x, u)+d(v, y)=d(x, y) \\
& d(x, v)+d(u, y)=d(x, y) \\
& d(x, y)+d(u, v)
\end{aligned}
$$

Relation of interval thinness to hyperbolicity

Lemma (Fellow travelers property): For any graph $G, \mathrm{~K}(\mathrm{G}) \leq 2 \delta(\mathrm{G})$.

Proof:

Let $x, y \in V$, and let u, v belong to the same slice of the interval $I(x, y)$.
Consider the 3 distance sums between these 4 vertices.

$$
\begin{array}{lll}
d(x, u)+d(v, y) & =d(x, y) & \\
d(x, v)+d(u, y) & =d(x, y) & \\
d(x, y)+d(u, v) & & \text { Largest Sum }
\end{array}
$$

From definition of hyperbolicity, $2 \delta \geq d(x, y)+d(u, v)-d(x, y)=d(u, v)$.

Relation of interval thinness to hyperbolicity

Lemma (Fellow travelers property): For any graph $G, \mathrm{~K}(\mathrm{G}) \leq 2 \delta(\mathrm{G})$.

Theorem [1]: For every Helly graph $G, k(G) \leq 2 \delta(G) \leq k(G)+1$.

Open question: What other types of graphs behave in this way?
[1] F. Dragan, H. Guarnera, "Obstructions to a small hyperbolicity in Helly graphs", Discrete Mathematics, 342(2):326-338, 2019.

How can this geometric information be applied?

Parameterized complexity/approximation factor

- Goal: create algorithms which solve problems utilizing these geometric properties
- Example: Consider δ hyperbolicity, which is known to be small in many real-world networks.
- Solve a problem in $O(f(\delta) m)$ time
- Compute a $f(\delta)$ approximation
- Some problems this has been applied to:
- Covering/packing problems
- Computing the diameter/radius
- Facility location problems
- Network analysis
- Vertex pursuit games on graphs
- Traveling salesman problem

Parameterized complexity/approximation factor

- Goal: create algorithms which solve problems utilizing these geometric properties
- Example: Consider δ hyperbolicity, which is known to be small in many real-world networks.
- Solve a problem in $O(f(\delta) m)$ time
- Compute a $f(\delta)$ approximation
- Some problems this has been applied to:
- Covering/packing problems
- Computing the diameter/radius
- Facility location problems
- Network analysis
- Vertex pursuit games on graphs
- Traveling salesman problem

1. F. Dragan and H. Guarnera. Helly-gap of a graph and vertex eccentricities. Theoretical Computer Science, 867:68-84, 2021.
2. F. Dragan and H. Guarnera. Eccentricity function in distance-hereditary graphs. Theoretical Computer Science, 833: 26-40, 2020.
3. F. Dragan and H. Guarnera. Eccentricity terrain of δ-hyperbolic graphs. Journal of Computer and System Sciences, 112: 50-56, 2020.
4. F. Dragan, G. Ducoffe, H. Guarnera. Fast deterministic algorithms for computing all eccentricities in (hyperbolic) Helly graphs, the 17th Algorithms and Data Structures Symposium (WADS'21), 2021.
5. Mohammed, F. Dragan, H. Guarnera. Fellow Travelers Phenomenon Present in Real-World Networks, Complex Networks \& Their Applications, 2022.

Example: eccentricity function and centers

The eccentricity $e(x)$ of a vertex x is the distance to a furthest u vertex to x
$e(x)=\max _{u \in V} d(x, u)$

The minimum and maximum eccentricities are called the radius $\operatorname{rad}(G)$ and diameter diam(G) of the graph, respectively

The center of a graph $C(G)$ is the set of vertices with minimum eccentricity

$$
C(G)=\{v \in V: e(v)=\operatorname{rad}(G)\}
$$

Applications:

- Measure the importance of a node (centrality indices)
- Facility location problems
- Detecting small-world networks (degrees of freedom)

Computing vertex eccentricities straightforwardly.

 The eccentricity $e(x)$ of a vertex x is the distance to a furthest u vertex to $x$$$
e(x)=\max _{u \in V} d(x, u)
$$

Take a connected graph with n vertices and m edges.

- A single Breadth-First Search (BFS) from a vertex x
- runs in $O(m)$ time
- yields $e(x)$
- Call BFS for each of the n vertices

- Total $O(n m)$ runtime

This is prohibitively expensive on many real-world networks, as they are huge!

Efficient eccentricity approximation via eccentricity approximating spanning tree

- Find a long path in $O(\mathrm{~m})$ time

Efficient eccentricity approximation via eccentricity approximating spanning tree

- Find a long path in $O(\mathrm{~m})$ time

- Run breadth-first search (BFS) from the middle vertex c between $u_{2} u_{3}$
- We show

$$
e_{T}(v) \leq e_{G}(v) \leq e_{T}(v)+6 \delta
$$

Theorem [2]: There is a 6δ approximation of all eccentricities in total $O(m)$ time

[2] F. Dragan and H. Guarnera. Eccentricity terrain of δ-hyperbolic graphs. Journal of Computer and System Sciences, 112: 50-56, 2020.

Conclusion

- Many real world networks exhibit the fellow travelers property
- Biological networks
- Communication networks
- Social networks
- Software ecosystems
- We can take advantage of this nice geometric property to solve problems faster on these networks
- Ex: computing vertex eccentricities

Conclusion and future work

- Many real world networks exhibit the fellow travelers property
- Biological networks
- Communication networks
- Social networks
- Software ecosystems
- What else?
- We can take advantage of this nice geometric property to solve problems faster on these networks
- Ex: computing vertex eccentricities
- What else? Ex: vertex pursuit games
- How does interval thinness relate to other geometric measures of negative curvature?
- What other problems can be solved better with interval thinness, compared to other measures?

Games on graphs: cops vs. robbers

Thank you! Questions?

