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Why graph networks?
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Graphs are everywhere

Sub-Category Graph
No Threshold 

Utility Patent network
1972-1999

(3 Million patents)



Graphs are everywhere
Internet (AS-level)

nodes n = 23,752
autonomous systems

edges m = 58,416 AS links
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What is Fellow Travelers 
Phenomenon?
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(Interval) Thinness of graphs
For any two x,y vertices on a graph 𝐼 𝑥, 𝑦 = 𝑧 ∈ 𝑉 ∶ 𝑑 𝑥, 𝑦 = 𝑑 𝑥, 𝑧 + 𝑑 𝑧, 𝑦 denotes 
the (metric) interval, i.e., all vertices that lay on a shortest path between x and y.

x y



(Interval) Thinness of graphs
For any two x,y vertices on a graph 𝐼 𝑥, 𝑦 = 𝑧 ∈ 𝑉 ∶ 𝑑 𝑥, 𝑦 = 𝑑 𝑥, 𝑧 + 𝑑 𝑧, 𝑦 denotes 
the (metric) interval, i.e., all vertices that lay on a shortest path between x and y.

x y



(Interval) Thinness of graphs
For any two x,y vertices on a graph 𝐼 𝑥, 𝑦 = 𝑧 ∈ 𝑉 ∶ 𝑑 𝑥, 𝑦 = 𝑑 𝑥, 𝑧 + 𝑑 𝑧, 𝑦 denotes 
the (metric) interval, i.e., all vertices that lay on a shortest path between x and y.

The set 𝑆! 𝑥, 𝑦 = {𝑧 ∈ 𝐼 𝑥, 𝑦 ∶ 𝑑 𝑧, 𝑥 = 𝑝} is called a slice of the interval from x to y.

x y

𝑆! (𝑥, 𝑦)
𝑆" (𝑥, 𝑦)

𝑆# (𝑥, 𝑦)

𝑆$ (𝑥, 𝑦)
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An interval 𝐼(𝑥, 𝑦) is said to be 𝜿-thin if any two 
vertices 𝑢, 𝑣 of the slice 𝑆!(𝑥, 𝑦) are at most 𝜅
apart, where integer 𝑝 satisfies  0 ≤ 𝑝 ≤ 𝑑(𝑥, 𝑦).

Ex: 𝐼(𝑥, 𝑦) is 2-thin.

𝜿 𝑮 is a small constant in 
many real-world networks!

The smallest value 𝜅 for which all 
intervals of G are 𝜅-thin is the 
thinness of the graph, denoted 𝜿(𝑮).



Ex: Protein Interaction Network
nodes n = 1,870 proteins
edges m = 2240 direct physical 
interactions between proteins

𝜿 𝑮 ≤ 𝟕



Ex: Other real-world networks with small thinness

• Social networks (subset of Facebook)
• nodes n = 293,501 users
• edges m = 5,589,802 friendships between users

• Web networks (from Google)
• nodes n = 855,802 websites
• edges m = 4,291,352 hyperlinks connecting sites

• Peer-to-peer networks (Gnutella)
• nodes n = 62,561 hosts
• edges m = 147,878 connections between hosts

𝜿 𝑮 ≤ 𝟕

𝜿 𝑮 ≤ 𝟒

𝜿 𝑮 ≤ 𝟓



Fellow travelers phenomenon is 
attributed to the negative 
curvature of the graph
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Geometric characteristics of real-world networks
• Surge of recent empirical and theoretical work analyzes geometric 

characteristics

• One important property: negative curvature
• causes traffic between vertices to pass through a relatively small core of 

the network – as if the shortest paths between them were curved inwards
• measured in many different (somewhat equivalent) ways

Zero Curvature

Negative Curvature



Geometric characteristics of real-world networks
• Surge of recent empirical and theoretical work analyzes geometric 

characteristics

• One important property: negative curvature
• causes traffic between vertices to pass through a relatively small core of 

the network – as if the shortest paths between them were curved inwards
• measured in many different (somewhat equivalent) ways

• Measures of negative curvature
• 𝜅 Interval thinness
• 𝜏 Geodesic triangle thinness
• 𝛿 Gromov Hyperbolicity
• ς Slimness
• ι Rooted Insize



δ-Hyperbolicity
Definition (Gromov’s 4-point condition) 
For any four points u,v,w,x, the two larger of the 
distance sums d(u,v)+d(w,x), d(u,w)+d(v,x), 
d(u,x)+d(v,w) differ by at most 2δ ≥ 0. 

u v

w x
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Example:
d(u,v) + d(w,x) = 2

d(u,w) + d(v,x) = 2

d(u,x) + d(v,w) = 4

So, 𝛿 = 9:;
;
= 1

Take any quadruple of vertices 
and these 3 distances sums.

2𝛿 ≥ LargestSum - MiddleSum



Relation of interval thinness to hyperbolicity

Lemma (Fellow travelers property): For any graph G,  κ(G) ≤ 2δ(G). 

δ-Hyperbolicity measures how close (locally) a metric space is to a tree from a 
metric point of view; the smaller the value indicates the graph

• is metrically closer to a tree (δ=0 in a tree)
• has global negative curvature

v

u

x y≤ 2δ



Relation of interval thinness to hyperbolicity
Lemma (Fellow travelers property): For any graph G,  κ(G) ≤ 2δ(G). 

Proof:
Let 𝑥, 𝑦 ∈ 𝑉, and let 𝑢, 𝑣 belong to the same slice of the interval 𝐼(𝑥, 𝑦).
Consider the 3 distance sums between these 4 vertices.

𝑑 𝑥, 𝑢 + 𝑑 𝑣, 𝑦

𝑑 𝑥, 𝑣 + 𝑑(𝑢, 𝑦)
𝑑 𝑥, 𝑦 + 𝑑(𝑢, 𝑣)

v

u

x y≤ 2δ
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Proof:
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Largest Sum

From definition of hyperbolicity,  2𝛿 ≥ 𝑑 𝑥, 𝑦 + 𝑑 𝑢, 𝑣 − 𝑑 𝑥, 𝑦 = 𝑑(𝑢, 𝑣).
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Relation of interval thinness to hyperbolicity
Lemma (Fellow travelers property): For any graph G,  κ(G) ≤ 2δ(G). 

v

u

x y≤ 2δ

Theorem [1]: For every Helly graph G, κ(G) ≤ 2δ(G) ≤ κ(G)+1. 

[1]  F. Dragan, H. Guarnera, “Obstructions to a small hyperbolicity in Helly graphs”, 
Discrete Mathematics, 342(2):326 – 338, 2019. 

Open question: What other types of graphs behave in this way?



How can this geometric 
information be applied? 

28



Parameterized complexity/approximation factor
• Goal: create algorithms which solve problems utilizing these geometric properties

• Example: Consider 𝛿 hyperbolicity, which is known to be small in many real-world 
networks. 
• Solve a problem in 𝑂(𝑓 𝛿 𝑚) time
• Compute a 𝑓 𝛿 approximation

• Some problems this has been applied to:
• Covering/packing problems
• Computing the diameter/radius
• Facility location problems
• Network analysis
• Vertex pursuit games on graphs
• Traveling salesman problem
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Example: eccentricity function and centers
The eccentricity e(x) of a vertex x is the distance to a furthest u vertex to x

The minimum and maximum eccentricities are 
called the radius rad(G) and diameter diam(G) 
of the graph, respectively

The center of a graph C(G) is the set of vertices 
with minimum eccentricity4 43 3

3

3 3

2

Applications:
• Measure the importance of a node (centrality indices)
• Facility location problems
• Detecting small-world networks (degrees of freedom)



Computing vertex eccentricities straightforwardly.
The eccentricity e(x) of a vertex x is the distance to a furthest u vertex to x

Take a connected graph with n vertices and m edges.

• A single Breadth-First Search (BFS) from a vertex x
• runs in O(m) time
• yields e(x)

• Call BFS for each of the n vertices
• Total O(nm) runtime

This is prohibitively expensive on many real-world networks, as they are huge!

𝑥



Efficient eccentricity approximation via eccentricity 
approximating spanning tree

• Find a long path in 𝑂(𝑚) time

𝑢" 𝑢#

𝑢$
𝑑 𝑢#, 𝑢$ ≥ 𝑑𝑖𝑎𝑚 𝐺 − 2𝛿

𝑢%



Efficient eccentricity approximation via eccentricity 
approximating spanning tree

• Find a long path in 𝑂(𝑚) time

• Run breadth-first search (BFS) from the middle vertex c between 𝑢#𝑢$
• We show 

𝑢$
𝑢%

𝑐

𝑐

T

Theorem [2]: There is a 6𝛿 approximation 
of all eccentricities in total 𝑂(𝑚) time  

[2] F. Dragan and H. Guarnera. Eccentricity terrain of 𝛿-hyperbolic graphs. Journal of Computer and System 
Sciences, 112: 50-56, 2020.



Conclusion
• Many real world networks exhibit the fellow travelers property

• Biological networks
• Communication networks
• Social networks
• Software ecosystems

• We can take advantage of this nice geometric property to solve 
problems faster on these networks
• Ex: computing vertex eccentricities



Conclusion and future work
• Many real world networks exhibit the fellow travelers property

• Biological networks
• Communication networks
• Social networks
• Software ecosystems
• What else?

• We can take advantage of this nice geometric property to solve 
problems faster on these networks
• Ex: computing vertex eccentricities
• What else? Ex: vertex pursuit games

• How does interval thinness relate to other geometric measures of 
negative curvature?

• What other problems can be solved better with interval thinness, 
compared to other measures?



Games on graphs: cops vs. robbers

robber-win

cop-win



Thank you! Questions?
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