
CSCI 200

Master Theorem

The Master Theorem applies to recurrences of the following form:

T (n) =
c, for n < d
aT (n/b) + f(n), for n ≥ d

where c and d are constants, a ≥ 1 and b > 1 are constants, and f(n) is an asymptotically positive function. Here, a
represents the number of sub-problems, n/b is the size of each of those sub-problems, and f(n) is the non-recursive overhead.
There are three cases:

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a logk n) with k ≥ 0, then T (n) = Θ(nlogb a logk+1 n).

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and f(n) satisfies the regularity condition, then T (n) = Θ(f(n)).
Regularity condition: af(n/b) ≤ cf(n) for some constant c < 1 and all sufficiently large n.

Assuming the regularity condition holds, another way to think of this is evaluating what we call a critical function nlogb a

and comparing it to the non-recursive overhead f(n). Then, the three cases are:

Case Condition Result
1. nlogb a is polynomially larger than f(n) T (n) = Θ(nlogb a)

2. nlogb a has the same value as f(n), up to some logarithmic power k T (n) = Θ(nlogb a logk+1 n)
3. nlogb a is polynomially smaller than f(n) T (n) = Θ(f(n))

Practice Problems

1. T (n) = 4T (n/2) + n

2. T (n) = 2T (n/2) + n log n

3. T (n) = T (n/3) + n log n

4. T (n) = 8T (n/2) + n2

5. T (n) = 9T (n/3) + n3n

6. T (n) = T (n/2) + 1

1



7. T (n) = 2T (n/2) + log n

8. T (n) = 2T (n/2) + 1

9. T (n) = 3T (n/2) + n2

10. T (n) = 4T (n/2) + n2

11. T (n) = 4T (n/2) + n2 log2 n

12. T (n) = 4T (n/2) + n2

13. T (n) = T (n/2) + 2n

14. T (n) = 3T (n/3) +
√
n

15. T (n) = 4T (n/2) + cn, where c is a constant

16. T (n) = 3T (n/4) + n log n

17. T (n) = 3T (n/3) + n/2

18. T (n) = 6T (n/3) + n2 log n

19. T (n) = 7T (n/3) + n2

20. T (n) = 2T (n/4) + n0.51

2



21. T (n) = 9(n/3) + n2 log4 n

Solutions

1. T (n) = 4T (n/2) + n Case 1 - T (n) = Θ(n2)

2. T (n) = 2T (n/2) + n log n Case 2 with k = 1 - T (n) = Θ(n log2 n)

3. T (n) = T (n/3) + n log n Case 3 - T (n) = Θ(n log n)

4. T (n) = 8T (n/2) + n2 Case 1 - T (n) = Θ(n3)

5. T (n) = 9T (n/3) + n3n Case 3 - T (n) = Θ(n3)

6. T (n) = T (n/2) + 1 (this is recurrence for binary search) Case 2 with k = 0 - T (n) = Θ(log n)

7. T (n) = 2T (n/2) + log n (this is recurrence for heap construction) Case 1 - T (n) = Θ(n)

8. T (n) = 2T (n/2) + 1 Case 1 - T (n) = Θ(n)

9. T (n) = 3T (n/2) + n2 Case 3 - T (n) = Θ(n2)

10. T (n) = 4T (n/2) + n2 Case 2 with k = 0 - T (n) = Θ(n2 log n)

11. T (n) = 4T (n/2) + n2 log2 n Case 2 with k = 2 - T (n) = Θ(n2 log3 n)

12. T (n) = 4T (n/2) + n2 Case 2 with k = 0 - T (n) = Θ(n2 log n)

13. T (n) = T (n/2) + 2n Case 3 - T (n) = Θ(2n)

14. T (n) = 3T (n/3) +
√
n Case 1 - T (n) = Θ(n)

15. T (n) = 4T (n/2) + cn, where c is a constant Case 1 - T (n) = Θ(n2)

16. T (n) = 3T (n/4) + n log n Case 3 - T (n) = Θ(n log n)

17. T (n) = 3T (n/3) + n/2 Case 2 with k = 0 - T (n) = Θ(n log n)

18. T (n) = 6T (n/3) + n2 log n Case 3 - T (n) = Θ(n2 log n)

19. T (n) = 7T (n/3) + n2 Case 3 - T (n) = Θ(n2)

20. T (n) = 2T (n/4) + n0.51 Case 3 - T (n) = Θ(n0.51)

21. T (n) = 9(n/3) + n2 log4 n Case 2 with k = 4, T (n) = Θ(n2 log4 n)

3


