Master Theorem

The Master Theorem applies to recurrences of the following form:

$$T(n) = \begin{array}{c} c, & \text{for } n < d\\ aT(n/b) + f(n), & \text{for } n \ge d \end{array}$$

where c and d are constants, $a \ge 1$ and b > 1 are constants, and f(n) is an asymptotically positive function. Here, a represents the number of sub-problems, n/b is the size of each of those sub-problems, and f(n) is the non-recursive overhead. There are three cases:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a} \log^k n)$ with $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and f(n) satisfies the regularity condition, then $T(n) = \Theta(f(n))$. Regularity condition: $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n.

Assuming the regularity condition holds, another way to think of this is evaluating what we call a **critical function** $n^{\log_b a}$ and comparing it to the non-recursive overhead f(n). Then, the three cases are:

Case	Condition	Result
1.	$n^{\log_b a}$ is polynomially larger than $f(n)$	$T(n) = \Theta(n^{\log_b a})$
2.	$n^{\log_b a}$ has the same value as $f(n)$, up to some logarithmic power k	$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
3.	$n^{\log_b a}$ is polynomially smaller than $f(n)$	$T(n) = \Theta(f(n))$

Practice Problems

1. T(n) = 4T(n/2) + n

2. $T(n) = 2T(n/2) + n \log n$

3. $T(n) = T(n/3) + n \log n$

4. $T(n) = 8T(n/2) + n^2$

5. $T(n) = 9T(n/3) + n^3n$

6. T(n) = T(n/2) + 1

7. $T(n) = 2T(n/2) + \log n$

8.
$$T(n) = 2T(n/2) + 1$$

9. $T(n) = 3T(n/2) + n^2$

10. $T(n) = 4T(n/2) + n^2$

11.
$$T(n) = 4T(n/2) + n^2 \log^2 n$$

12. $T(n) = 4T(n/2) + n^2$

13. $T(n) = T(n/2) + 2^n$

14. $T(n) = 3T(n/3) + \sqrt{n}$

15. T(n) = 4T(n/2) + cn, where c is a constant

16. $T(n) = 3T(n/4) + n \log n$

17. T(n) = 3T(n/3) + n/2

18. $T(n) = 6T(n/3) + n^2 \log n$

19. $T(n) = 7T(n/3) + n^2$

20. $T(n) = 2T(n/4) + n^{0.51}$

21. $T(n) = 9(n/3) + n^2 \log^4 n$

Solutions

1. T(n) = 4T(n/2) + n Case 1 - $T(n) = \Theta(n^2)$ 2. $T(n) = 2T(n/2) + n \log n$ Case 2 with $k = 1 - T(n) = \Theta(n \log^2 n)$ 3. $T(n) = T(n/3) + n \log n$ Case 3 - $T(n) = \Theta(n \log n)$ 4. $T(n) = 8T(n/2) + n^2$ Case 1 - $T(n) = \Theta(n^3)$ 5. $T(n) = 9T(n/3) + n^{3}n$ Case 3 - $T(n) = \Theta(n^{3})$ 6. T(n) = T(n/2) + 1 (this is recurrence for binary search) Case 2 with $k = 0 - T(n) = \Theta(\log n)$ 7. $T(n) = 2T(n/2) + \log n$ (this is recurrence for heap construction) Case 1 - $T(n) = \Theta(n)$ 8. T(n) = 2T(n/2) + 1 Case 1 - $T(n) = \Theta(n)$ 9. $T(n) = 3T(n/2) + n^2$ Case 3 - $T(n) = \Theta(n^2)$ 10. $T(n) = 4T(n/2) + n^2$ Case 2 with $k = 0 - T(n) = \Theta(n^2 \log n)$ 11. $T(n) = 4T(n/2) + n^2 \log^2 n$ Case 2 with $k = 2 - T(n) = \Theta(n^2 \log^3 n)$ 12. $T(n) = 4T(n/2) + n^2$ Case 2 with $k = 0 - T(n) = \Theta(n^2 \log n)$ 13. $T(n) = T(n/2) + 2^n$ Case 3 - $T(n) = \Theta(2^n)$ 14. $T(n) = 3T(n/3) + \sqrt{n}$ Case 1 - $T(n) = \Theta(n)$ 15. T(n) = 4T(n/2) + cn, where c is a constant Case 1 - $T(n) = \Theta(n^2)$ 16. $T(n) = 3T(n/4) + n \log n$ Case 3 - $T(n) = \Theta(n \log n)$ 17. T(n) = 3T(n/3) + n/2 Case 2 with $k = 0 - T(n) = \Theta(n \log n)$ 18. $T(n) = 6T(n/3) + n^2 \log n$ Case 3 - $T(n) = \Theta(n^2 \log n)$ 19. $T(n) = 7T(n/3) + n^2$ Case 3 - $T(n) = \Theta(n^2)$ 20. $T(n) = 2T(n/4) + n^{0.51}$ Case 3 - $T(n) = \Theta(n^{0.51})$ 21. $T(n) = 9(n/3) + n^2 \log^4 n$ Case 2 with k = 4, $T(n) = \Theta(n^2 \log^4 n)$