Greedy Nethod
 CLRS 16.1-16.3
 (+ some supplemental material)

Greedy Method Technique

- The greedy method is a general algorithm design paradigm, built on the following elements:
- configurations: different choices, collections, or values to find
- objective function: a score assigned to configurations, which we want to either maximize or minimize
- Idea: make a greedy choice (locally optimal) in hopes it will eventually lead to a globally optimal solution.
- It works best when applied to problems with the greedy-choice property
- a globally-optimal solution can always be found by a series of local improvements from a starting configuration.
- Example: climbing a hill

Example: Making Change

- Problem: A dollar amount to reach and a collection of coin amounts to use to get there.
- configuration: A dollar amount yet to return to a customer plus the coins already returned
- objective function: Minimize number of coins returned.
- Greedy solution: Always return the largest coin you can.
- Ex. 1: Coins are valued $\$.32, \$.08$, $\$.01$
- Has the greedy-choice property, since no amount over $\$.32$ can be made with a minimum number of coins by omitting a $\$.32$ coin (similarly for amounts over $\$.08$, but under $\$.32$).
- Ex. 2: Coins are valued $\$.30, \$.20, \$.05, \$.01$
- Does not have greedy-choice property, since $\$.40$ is best made with two $\$.20$'s, but the greedy solution will pick three coins (which ones?)

Example: Knapsack Problem

- Given: A set S of n items, with each item i having:
- b_{i} a positive benefit
- w_{i} a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.

There are two common variations:

- 0-1 Knapsack Problem: we can either leave an item (0) or take it in its entirety (1)
- Fractional Knapsack Problem: we can take a fractional amount of an item

Only one of these can be solved with a greedy approach!

Example: Fractional Knapsack Problem

- Given: A set S of n items, with each item i having:
- b_{i} a positive benefit
- w_{i} a positive weight
- Note: we can take a fractional amount $x_{i} \leq w_{i}$ of an item i
- Goal: Choose items with maximum total benefit but with weight at most W.

Objective: maximize $\sum_{i \in S} b_{i}\left(x_{i} / w_{i}\right) \quad$ Constraint: $\quad \sum_{i \in S} x_{i} \leq W$

Solution:

- 1 ml of item 5
- 2 ml of item 3
- 6 ml of item 4
- 1 ml of item 2

Example: Fractional Knapsack Problem

- Greedy choice: Keep taking item with highest value (benefit to weight ratio)

Algorithm fractionalKnapsack(S, W)

Input: set \boldsymbol{S} of items w/ benefit b_{i} and weight w_{i}; max. weight W
Output: amount x_{i} of each item i
to maximize benefit with
weight at most W
for each item in \boldsymbol{S}
$x_{i} \leftarrow 0$
$\boldsymbol{v}_{i} \leftarrow \boldsymbol{b}_{\boldsymbol{i}} / \boldsymbol{w}_{\boldsymbol{i}} \quad$ \{value $\}$
$\boldsymbol{w} \leftarrow 0 \quad$ \{total weight $\}$
while $\boldsymbol{w}<\boldsymbol{W}$
remove item \boldsymbol{i} with highest $\boldsymbol{v}_{\boldsymbol{i}}$
$\boldsymbol{x}_{\boldsymbol{i}} \leftarrow \min \left\{\boldsymbol{w}_{\boldsymbol{i}}, \boldsymbol{W}-\boldsymbol{w}\right\}$
$\boldsymbol{w} \leftarrow \boldsymbol{w}+\boldsymbol{x}_{\boldsymbol{i}}$

Run time: $O(n \log n)$ - why?

Proof of correctness: We must establish that this problem has the greedy choice property. Use a proof by contradiction. Suppose there is a optimal solution S^{*} better than our greedy solution S.

- There is an item i in S with higher value than a chosen item j from S^{*}, i.e., $v_{i}>v_{j}$ but $x_{i}<w_{i}$ and $x_{j}>0$.
- If we substitute some i with j, we get a better solution in S^{*}, a contradiction
- How much of $i: \min \left\{w_{i}-x_{i}, x_{j}\right\}$
- Thus, there is no better solution than the greedy one

Example: Activity Selection

- Given: A set S of n activities that wish to use a resource, with each activity a_{i} having a start time s_{i} and finish time f_{i}; the activity takes place during $\left[s_{i}, f_{i}\right.$)
- Goal: Select a maximum-size subset of mutually non-conflicting activities
- Example with 11 activities
- How many are non-overlapping?

i	1	2	3	4	5	6	7	8	9	10	11
s_{i}	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	9	9	10	11	12	14	16

- What greedy choice would you make?
- Does it satisfy the greedy choice property? Prove it.

