
Red Black Trees
CLRS 13.1 – 13.3

(+ some supplemental material)
includes variation of RBT insert described differently than CLRS

Red Black Tree (RBT)
A binary search tree that satisfies the following red-black properties:
1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black
5. For each node, all simple paths from the node to the descendant leaves

contain the same number of black nodes (i.e., all leaves have the same black
depth)

When we visualize, we often omit the black leaves (NILs).

9

154

62 12

7

21

Red Black Tree (RBT)
A binary search tree that satisfies the following red-black properties:
1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black
5. For each node, all simple paths from the node to the descendant leaves

contain the same number of black nodes (i.e., all leaves have the same black
depth)

When we visualize, we often omit the black leaves (NILs).

9

154

62 12

7

21

Ex: Is it a red black tree?

Yes

9

154

9

154

Yes

9

154

No
Root isn’t black & red node has red child

9

154

No
NIL leaves aren’t black

Ex: Is it a red black tree?

15

213

5 17

8

22

23

No
Violates depth property

Black depth = 4

Black depth = 2

Height of a Red Black Tree
Theorem: A red-black tree storing n items has height O(log n)

Proof:

Let T* be the portion of the tree T consisting of all nodes with depth ≤ h*
T* is complete. Thus, h* ≤ logn.
Because h ≤ 2h*, h ≤ 2logn ∈	O(log n).

• The search algorithm for a red-black tree is the same as that for a binary search tree.
• By the above theorem, searching takes O(log n) time

Consider the shortest path (left) and longest
path (right) from the root to an external node.

… … … … …

h*
h ≤ 2h* T*

RBT - Insert
• Use insertion algorithm for binary search trees and color red the newly inserted

node z, unless it’s the root.
• we preserve properties 1, 2, 3, 5.
• if the parent v of z is black, we also preserve property 4 and we are done

6

3 8

6

3 8

4
z

v v

z

RBT - Insert
• Use insertion algorithm for binary search trees and color red the newly inserted

node z, unless it’s the root.
• we preserve properties 1, 2, 3, 5.
• if the parent v of z is black, we also preserve property 4 and we are done
• if the parent v of z is red, we have a double red (a violation of property 4),

which requires a reorganization of the tree
• Ex: Insert 4 causes a double red

6

3 8

6

3 8

4
z

v v

z

Not a valid RBT!

Fixing a double red
Consider a double red with child z and parent v, and let w be the sibling of v

• Case 1: w is black

• Case 2: w is red

4

6

7z
vw

2

4

6

7z
vw

2

Restructuring

Recoloring

Fixing a double red: restructuring
Consider a double red with child z and parent v and let w be the sibling of v.
Let u be the parent of v.

1. Relabel nodes z, v, u temporarily as a, b, c so that a, b, c will be visited in
this order by an inorder tree traversal.

2. Replace u with the node labeled b (colored black). Make nodes a and c the
left and right child of b (each colored red).

4

6

7
z

vw
2

u

4

6

7

b

c

w
2

a

a=u
b=z
c=v

Fixing a double red: restructuring
There are four restructuring configurations depending on the in-order traversal
of nodes z, v, u

2

4

6

2 6

4

6

2

4
6

4

2

2

6

4

u u u u
v v v v

z z z z

u, z, v v, z, u z, v, u u, v, zInorder
traversal:

Fixing a double red
Consider a double red with child z and parent v, and let w be the sibling of v

• Case 1: w is black

• Case 2: w is red

4

6

7z
vw

2

4

6

7z
vw

2

Restructuring

Recoloring

Fixing a double red: recoloring
Consider a double red with child z and parent v, and let w be the sibling of v.
Let u be the parent of v.

1. Color v and w black.
2. Color u red, unless it’s the root.
3. If the double-red problem reappears at u, then repeat the process for fixing

two reds at u (either with restructuring or recoloring).

Fixes problem locally, but can propagate double-red problem up the tree.

4

6

7z
vw

2
4

6

7z
vw

2

uu

Analysis of insert into RBT
Description:
1. Search for k to locate the insertion node z
2. Add the new item k at node z and color z red
3. While z and its parent v form a double red:

• If sibling w of v is black, do a restructuring once, and we are done
• If sibling w of v is red, do a recoloring, and set z to be the parent of u

Analysis:
Recall that RBT has O(log n) height.
• Searching runs in O(log n)
• Adding a new red node is O(1)
• A single restructuring or recoloring is O(1)
• While loop repeats at most O(log n)
Total run time for insert: O(log n)

z
vw

?

RBT - Delete
Use deletion algorithm for binary search trees to delete internal node v and its
external child w. Let r be the sibling of w.
• if v is red or r is red, then color r black and we are done.

6

3 8
v

r w

6

3
r

6

3 8
v

r w
7

6

3 7 r

RBT - Delete
Use deletion algorithm for binary search trees to delete internal node v and its
external child w. Let r be the sibling of w.
• if v is red or r is red, then color r black and we are done.
• otherwise, (v and r are black) we color r double black, which requires a

reorganization of the tree
• Ex: Delete 8 causes a double black

How to fix a double black? It’s like fixing a double red… requires a recoloring,
restructuring, or “adjustment”
• We can delete in 𝑂 log 𝑛 time

6

3 8

4

v

r w

6

3

4

r

Not a valid RBT!

