
Sorting Lower Bounds
Linear sorting

CLRS 8.1 – 8.4
(+ some supplemental material)



Comparison-based sorting
• Recall – Sorting
• input: A sequence of n values 𝑥!, 𝑥", … , 𝑥#
• output: A permutation 𝑦!, 𝑦", … , 𝑦# such that 𝑦! ≤ 𝑦" ≤ ⋯ ≤ 𝑦#

• Many algorithms are comparison based
• they sort by making comparisons between pairs of objects
• ex: selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, …
• best so far runs in 𝑂(𝑛 log 𝑛) time… can we do better?

• Let’s derive a lower bound on the running time of any algorithm that uses 
comparisons to sort 𝑛 elements 



Counting comparisons
A decision tree represents every sequence of comparisons that an algorithm might 
make on an input of size 𝑛
• each possible run of the algorithm corresponds to a root-to-leaf path
• at each internal node a comparison 𝑥$ < 𝑥% is performed and branching made
• nodes annotated with the orderings consistent with the comparisons made so far
• leaf contains result of computation (a total order of elements)

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?



Decision Tree Example
• Algorithm: insertion sort
• Instance (n = 3): the numbers a, b, c

abc, bca, acb, 
cab, bac, cba

bca, bac, cba abc, acb, cab

bca, cba bac

cba bca

acb, cab abc

cab acb

a < b ?

a < c ?

b < c ?

F T

TT

T T

F

F

F

F

b < c ?

a < c ?



Height of Decision Tree
Theorem: Any decision tree sorting 𝑛 elements has height Ω(𝑛 log 𝑛).
Proof: There are 𝑛! leaves. A binary tree of height ℎ has at most 2& leaves. So

Thus, ℎ ∈ Ω(𝑛 log 𝑛).

Corollary: Any sorting algorithm that uses only comparisons takes Ω(𝑛 log 𝑛) in the 
worst case.

2& ≥ 𝑛!
ℎ ≥ log 𝑛!
≥ 𝑐 ⋅ log 𝑛#
= 𝑐 ⋅ 𝑛 log 𝑛

minimum height (time)

log (n!)

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

n!



Linear time sorting

Any comparison-based sorting algorithm runs in Ω(𝑛 log 𝑛) time in the worst case.

To achieve linear-time sorting of n elements:
• (!!!) Assume keys are integers in the range 𝟎, 𝒌
• We can use other operations instead of comparisons
• We can sort in linear time when 𝑘 is small enough
• Note: we cannot assume this for just any problem with integers !!!

Some sorting algorithms which are not comparison-based
• Counting sort
• Radix sort
• Bucket sort



Counting sort
Input: array 𝐴[1…𝑛] of integers, each in the range [0, 𝑘]

Steps:
• Create counting array 𝐶[0…𝑘] with values initially zero
• For each of the 𝑛 items 𝑎 ∈ 𝐴, increment the value of 

𝐶 𝑎
• For each of the 𝑘 items in 𝐶, add adjacent values
• Now, 𝐶[𝑖] contains the number of elements less than or 

equal to 𝑖
• Create a new output array 𝐵[1…𝑛] which will hold 

sorted elements
• For each of the 𝑛 items 𝑎 ∈ 𝐴 (starting at the end),

• Set 𝐵 𝐶 𝑎 = 𝑎
• Decrement 𝐶 𝑎

https://algorithm-visualizer.org/divide-and-
conquer/counting-sort

https://algorithm-visualizer.org/divide-and-conquer/counting-sort


Notable properties of counting sort
• Run time:
• 𝑶(𝒏 + 𝒌)
• 𝑶(𝒏) when 𝒌 = 𝑶(𝒏)
• Ex: if all integers are in the range [0, 100𝑛], then counting sort is 𝑂 𝑛
• Ex: if all integers are in the range [0, 𝑛'], then counting sort is 𝑂(𝑛')
• Ex: if all integers are in the range 0, 2# , then counting sort is 𝑂(2#)

• It is stable: numbers with the same value appear in the output array in the same
order as they do in the input array
• Important when we are sorting multiple times based on different attributes
• Ex: sort a list of names by first name, then sort by last name

• Ex: Unsorted sequence (B, b, a, c). Suppose B = b and a < b < c.
• Stable sorted: (a, B, b, c)
• Unstable sorted: (a, b, B, c)

Efficient run time complexity

Efficient space complexity (in-place)Stable

In general, we can choose two:



Radix sort
Input: array 𝐴[1…𝑛] of 𝑛 integers where
• each integer is represented as 𝑑 keys: 𝒙𝒅𝒙𝒅"𝟏…𝒙𝟐𝒙𝟏
• 𝒙𝒅 is the most significant key/dimension; 𝒙𝟏 is the least significant key/dimension
• all 𝒏𝒅 keys are in the range [𝟎, 𝒌]

Here, we represent an integer key in base 10 (so, all keys are in the range [0,9].
In this case, 𝑑 = 3. 



Notable properties of radix sort
• Run time:
• 𝑶(𝒅 𝒏 + 𝒌 )
• 𝑂(𝑛) when 𝑑 is constant and 𝑘 = 𝑂(𝑛)

• In the last example, we represented integers in base 10.
• Suppose our maximum integer is 𝑁, and 𝑁 = 𝑂(𝑛() for a constant 𝑐
• Then the number of keys needed for each integer is 𝑑 = log!)𝑁 = 𝑂(log 𝑛)
• Total run time: 𝑂(𝑛 log 𝑛)

• We can do better!! What if we represented integer keys in base 𝑛?
• Suppose our maximum integer is 𝑁, and 𝑁 = 𝑂(𝑛() for a constant 𝑐
• Then the number of keys needed for each integer is 𝑑 = log#𝑁 = 𝑐 = 𝑂(1)
• Total run time: 𝑂(𝑛)

• Ex: if all integers are in the range [0, 𝑛*], then representing the integers in base 𝑛
allows radix sort to run in 𝑂(𝑛) time 


