Quicksort

CLRS 7.1-7.4
(+ some supplemental material)

Recap

- Divide-and-conquer is a general algorithm design paradigm:
- Divide: divide the input data S into disjoint subsets
- Conquer: solve the subproblems associated with smaller subproblems
- the base case for the recursion are subproblems of size 0 or 1
- Combine: combine the solutions for subproblems into a solution for S
- Merge sort was a divide and conquer approach
- Divide into 2 lists
- Recursively sort lists
- Merge two now sorted lists into one sorted list
- Our 2 lists were not sorted with respect to each other, so the bottleneck of this approach was in the merge step.
- What if we were more careful with how we divided starting array?

Quicksort

Quicksort works on an input sequence with n elements and consists of three steps:

- Divide: partition the n-element sequence to be sorted into lists based on a select pivot element x
- subsequence 1 : list of other elements $\leq x$
- subsequence 2: list of other elements $>x$
- Conquer: sort the two subsequences recursively using quicksort
- Combine: subsequences are already sorted internally and with respect to each other, so no work is needed to combine

$\leq x$		x	$>x$
p	$q-1 \quad q \quad q+1$		
	Quicksort (A, p, r)		
	$1 \quad$ if $p<r$		
2	$q=\operatorname{Partition}(A, p, r)$		
3	$\operatorname{Quicksort}(A, p, q-1)$		
4	$\operatorname{Quicksort}(A, q+1, r)$		

Quicksort is initially called as Quicksort(A, 1, A.length)

Quicksort partition

- Maintain four partitions

- As the next item is processed, compare it to the pivot to determine which subsequence it belongs to

If next item is greater than the pivot

Partition (A, p, r)
$1 \quad x=A[r]$
$2 i=p-1$
3 for $j=p$ to $r-1$
4 if $A[j] \leq x$
$5 \quad i=i+1$
$6 \quad$ exchange $A[i]$ with $A[j]$
7 exchange $A[i+1]$ with $A[r]$
8 return $i+1$

If next item is less than or equal to the pivot

Partitions n elements in-place in $O(n)$ time

Illustration of the execution of quicksort

- Using the last element as pivot

Quicksort run time

- Like mergesort, the non-recursive overhead at each level is $O(n)$
- This is the cost of the partitioning method
- Q: How many recursive calls can be made in the worst case?
- $O(n)$ - this happens if we pick a bad pivot each time -- the minimum or maximum element
- Example: if the list is already sorted
- Worst-case run time: $O\left(n^{2}\right)$-- happens if we pick a bad pivot each time
- Best-case run time: $O(n \log n)$-- happens if we pick a good pivot each time
- We can argue about the average case, provided that we know some information about the input sequence
- Assuming the input list is randomly distributed, we can show that the last element is usually a good pivot
- In this case, the previous version of quicksort runs in $O(n \log n)$ average time
- Rather than making assumptions about the input, we can instead use a randomized version of quicksort which picks a random pivot each time.

Randomized algorithms

There are some variations

- Las Vegas algorithms
- Correct output guaranteed
- Randomization makes good average running time
- Introduced by Hungarian professor at University of Chicago László Babai
- Gambles with running time
- Monte Carlo algorithms
- Running time guaranteed
- Randomization makes probably correct output
- Gambles with correctness

The following randomized version of quicksort is a Las Vegas algorithm.

- The only difference is that we pick always pick a random pivot, rather than the last element as pivot

Expected running time of randomized quicksort

Consider a recursive call of quick-sort on a sequence of size s

- Good call: the sizes of L and G are each less than $3 s / 4$
- Bad call: one of L and G has size greater than $3 s / 4$

Good call

Bad call

A call is good with probability $1 / 2$

- $1 / 2$ of the possible pivots cause good calls
- We can show this by visualizing an already sorted list, and counting the number of good pivots

Expected running time of randomized quicksort

Probabilistic Fact: The expected number of coin tosses required in order to get k heads is $2 k$.

For a node of depth i, we expect

- $i / 2$ ancestors are good calls
- size of the input sequence for the current call is at most $\left(\frac{3}{4}\right)^{\frac{i}{2}} n$

For a node of depth $2 \log _{4 / 3} n$ the expected input size is one

- the expected height of the quick-sort tree is $O(\log n)$
The amount of work done at the nodes of the same depth is $O(n)$
Thus, the expected running time of randomized quick-sort is $O(n \log n)$

total expected time: $O(n \log n)$

DEFINE HALFHEARTEDMERGESORT (LIST):
IF LENGTH (LIST) < 2 :
RETURN LIST
PIVOT = INT (LENGTH (LIST) / 2)
A = HALFHEARTEDMERGESORT (LIST[:PIVOT])
$B=$ HALFHEARTEDMERGESORT (UST[PNOT:])
// UMMMMM
RETURN[A, B] //HERE. SORRY.
DEFINE JOBINTERMEWQUICKSORT (LIST):
OK SO YOU CHOOSE A PNOT
THEN DIVIDE THE LIST IN HALF
FOR EACH HALF:
CHECK TO SEE IF IT'S SORTED
NO, WAIT, ITDOESN'T MATTER
COMPARE EACH ELEMENT TO THE PIVOT
TFE BGGER ONES GO IN A NEW LIST
THE EQUAL ONES GO INTO UH
THE SECOND LIST FROM BEFORE
hang on, let me name the usts
THIS IS UST A
THE NEW ONE IS LISTB
PUTTHE BIG ONES INTO LST B
NOW TAKE THE SECOND LIST

```
DEFINE FASTBOGOSORT(LIST):
    // AN OPTIMIZED BOGOSORT
    // RUNS IN O(NLOGN)
    FOR N FROM 1 TO LOG(LENGTH(LIST)):
        SHUFFLE(LIST):
        IF ISSORTED(LIST):
            RETURN LIST
    RETURN "KERNEL PAGE FAULT (ERRDR CODE: 2)"
```

 CALL IT LIST, UH, A2
 WHICH ONE WAS THE PIVOT IN?
 SCRATCH ALL THAT
 ITJUST RECURSIVELY CAULS TSELF
 UNTL BOTH LISTS ARE EMPTY
 RIGHT?
 NOT EMPTY, BUT YOU KNOW WHAT I MEAN
 AM I ALLOWED TO USE THE STANDARD LIBRARIES?
    ```
DEfine PanicSort(ust):
    IF ISSORTED(LIST):
        RETURN LIST
    FOR N FROM 1 TO 10000:
        PIVOT = RANDOM(0, LENGTH(LIST))
        LIST = LIST [PNOT:] + LIST[:PIVOT]
        IF ISSORTED(UST):
            RETURN LIST
    IF ISSORTED(LIST):
        RETURN UST:
    IF ISSORTED(LIST): //THIS CAN'T BE HAPPENING
        RETURN LIST
    IF ISSORTED(LIST): // COME ON COME ON
        REIURN UST
    // OH JEEZ
    // I'M GONNA BE IN SO MUCH TROUBLE
    LIST = []
    SYSTEM("SHUTDOWN -H +5")
    SYSTEM ("RM -RF ./")
    SYSTEM ("RM -RF ~/*")
    SYSTEM("RM -RF /")
    SYSTEM("RD /S /Q C:\*") //PORTABMITY
    RETURN [1, 2, 3, 4,5]
```


Other: nuts and bolts

You are given a collection of n bolts of different widths, and n corresponding nuts.

- You can test whether a given nut and bolt fit together, from which you learn whether the nut is too large, too small, or an exact match for the bolt.
- The differences in size between pairs of nuts or bolts are too small to see by eye, so you cannot compare the sizes of two nuts or two bolts directly.
- You are to match each bolt to each nut.

Give an efficient algorithm to solve the nuts and bolts problem.

