
Heaps & heapsort
CLRS 6.1 – 6.5



(Max) Heaps
• A (binary) heap is an array object A that we can view as a nearly complete binary tree, 

where the root is at 𝑨[𝟏]
• For any given node at index 𝑖, other related nodes can be found 
• Parent: at index !

"
• Left child: at index 2𝑖
• Right child: at index 2𝑖 + 1

• Properties:
• Nearly complete binary tree: tree is completely filled on all levels except possibly the

lowest, which is filled from the left up to a point
• Max-heap property: for every node 𝑖 other than the root, 𝐴 Parent 𝑖 ≥ 𝐴[𝑖]



Heap height
Theorem: A heap containing 𝒏 elements has height 𝑂 log 𝑛 .

Proof:
• Let ℎ be the height of a heap storing 𝑛 keys.
• Since there are 2! keys at depth 𝑖 = 0,… , ℎ − 1 and at least one key at depth ℎ, 

we have 𝑛 ≥ 1 + 2 + 4 + …+ 2"#$ + 1.
• Thus, 𝑛 ≥ 2" and therefore ℎ ≤ log 𝑛. 

1

2

2h-1

1

keys
0

1

h-2

h-1

depth

h

2h-2



Heap operations
• Max-Heap-Insert: insert into heap

• Heap-Extract-Max: remove and return item with max key

• Heap-Increase-Key: increase value of particular key

• Max-Heapify: maintain max-heap property

• Heap-Maximum: return (but do not remove) item with max key

• Build-Max-Heap: construct a max-heap from an array of keys

• Heapsort: use a heap to sort an array of keys

𝑂 log 𝑛

𝑂 𝑛 log 𝑛

𝑂 𝑛

𝑂 1



Max-Heapify
• Works on a particular node at index 𝑖.
• Assumption: Binary trees rooted at Left(𝑖) and 

Right(𝑖) are max-heaps, but possibly the node 
at index 𝑖 might violate the max-heap property.
• Idea: While the max-heap property is violated, 

fix it by floating down the node

𝑂 log 𝑛



Inserting a single element
• Place it at the end of the array (next empty node of tree)
• While the max-heap property is violated, fix it by floating up the node.

Visualization (“insert”): http://btv.melezinek.cz/binary-heap.html

𝑂 log 𝑛

𝑂 log 𝑛

http://btv.melezinek.cz/binary-heap.html


Constructing a heap 
from an array of 
elements
• Take advantage of the fact that 

all elements are known in 
advance
• Repeatedly use max-heapify

Visualization (“build heap”): http://btv.melezinek.cz/binary-heap.html

𝑂 𝑛

http://btv.melezinek.cz/binary-heap.html


Extracting the maximum
• Remove the maximum (known to be the root node at A[1])
• Exchange it with the last item
• Fix the max-heap property

Visualization (“extract max”): http://btv.melezinek.cz/binary-heap.html

𝑂 log 𝑛

http://btv.melezinek.cz/binary-heap.html


Heapsort
• Efficiently build a heap
• Repeatedly remove the maximum item, placing it at the end of the array
• Repeat process with remaining part of the heap

Visualization (“heap sort”): http://btv.melezinek.cz/binary-heap.html

𝑂 𝑛 log 𝑛

http://btv.melezinek.cz/binary-heap.html


Application to Priority Queues
• A priority queue stores a collection of (key, element) pairs and supports
• Insert
• Maximum (Minimum)
• Extract-Max (Extract-Min)

• Easy to sort using a priority queue as auxiliary data structure
• Insert all items into priority queue
• One-by-one, call extract-max and place item at the beginning of list

• This generic priority-queue approach to sorting encapsulates common sorting 
algorithms, depending on the implementation of the priority queue
• Use heap à heapsort
• Use unsorted list à selection sort
• Use sorted list à insertion sort


