Basic Data Structures

CLRS 10.1, 10.2, 10.4
(+ some supplemental material on trees)

Stacks
Queues
Linked Lists

Rooted Trees

Abstract Data Types (ADTs): typical operations

* Search(S, k)

* Insert(S, x)

* Delete(S, x)

* Minimum(S)

* Maximum(S)
 Successor(S,x)

* Predecessor(S,x)

Any specific application will usually require only a few of these to be implemented.

Stack

* Container that stores arbitrary objects
* Insertions and deletions follow last-in first-out (LIFO) scheme

STACK-EMPTY ()

k: M5 top ==
2 return TRUE
3 else return FALSE

PUSH(S, x)

1 S.top = S.top + 1
2 S[S.top] = x
Pop(S)

1 if STACK-EMPTY (S)

2 error “underflow”

3 else S.top = S.top — 1
4 return S[S.rop + 1]

0(1)

0(1)

0(1)

5 6 7

@)
\9}
O
%}

15| 6

173 [

S.top =6

pushj r pop

top of stack [

15

Applications of stack

Direct

» Page visited history in a web browser
* Undo sequence in a text editor

* Chain of method calls in C++ runtime environment

Indirect
* Auxiliary data structure for algorithms
 Component of other data structures

pushj r pop

top of stack [

EEER

Queue

e Container that stores arbitrary objects

enquevem=p [] [] [] [] ==p dequeue

tail head

* Insertions and deletions follow first-in first-out (FIFO) scheme

ENQUEUE(Q, x)

1 Q[Q.tail] = x

2 if Q.1il == Q.length 9D
3 0.tail = 1

4 else Q.tail = Q.tail + 1
DEQUEUE(Q)

1 x = Q[Q.head]

2 if Q.head == Q.length 0(1)
3 Q.head = 1

4 else Q.head = Q.head + 1

5 return x

¥ 2 3 & 9 6 9 8 % 1011712

o IR s

8

+ [

!

Q.head =17

1

Q.tail = 12

I 2 3 ‘4 5 0: . K A 20112

o (3]s I 5[

8

4|17

) }

Q.tail=3 Q.head =7

1 2 3 4 5 6 7 8 9 10 11 12

MBI S E

8

4 17

))

Q.tail =3 Q.head = 8

Applications of queue

Direct
* Waiting lines
* Access to shared resources

* Multiprogramming

Indirect
* Auxiliary data structure for algorithms
 Component of other data structures

enqueue m=p |

| || == dequeue

tail

head

head tail

Linked List eI

* A data structure consisting of a sequence of nodes, each of which stores an
element.
* Singly linked lists have nodes that contain only a link to the next node

* Doubly linked lists have nodes that contain a link to the previous and next node

prev key next

\ -/
L.head —> /|9 | < . 4| < 04
List-Insert(L, x) where x.key = 25
L.head —{ /(25| L (9| [(16| [« (4| [1|/
Y
List-Delete(L, y) where y is the object with key 4
L.head —>/|25| 1 |9| 12| [16] [—1 |1|/

Linked List

LIST-SEARCH(L, k) O(n)

1 x = L.head

2 while x # NIL and x.key # k
3 X = X.next

4 return x

LIST-INSERT(L, x) 0(1)

1
2
3
4
S

x.next = L.head
if L.head # NIL
L.head.prev = x

L.head = x
X.prev = NIL

LIST-DELETE(L, x) O(1)

N B W N =

if x.prev # NIL
X.prev.next = X.next

else L.head = x.next

if x.next # NIL
X.next.prev = X.prey

head tail

Note: We are inserting a node x which has
three attributes:

* element value

* previous

* next

Note: Deleting a given node x requires that we are
provided and therefore already have found the
node x

Deleting an element with a given key is ©(n) time.

8

Storing a sequence of items: linked list or array?

 Arrays provide access by rank (number of elements preceeding it)

* Linked lists provide access by position (node element itself)

* A sequence can be implemented using either data type
* Rank-based operations are faster using an array
 Position-based operations are faster on a linked-list

* Ex: Access element at rank i
* O(1) in array
* O(n) in a linked list

* Ex: Remove an item at position p
* O(n) in an array
* O(1) in a linked-list

Rooted trees

* Stores elements hierarchically

* Nodes have a parent-child relationship

* A distinguished node is the root of the tree: the only element with no parent
* External node (leaf): a node with no children

* Internal node: a node with at least one child

root Direct applications

[Computers”R"Us] * Organizational charts

* File systems

internal
nodes ﬁ\/lanufacturiné R&D

* Programming environments

Indirect applications

[US] ['”tematio"a'] [LaptOps] [DeSktOps] « Component of other data
structures

external nodes
Europe [Asia] [Canada] (leaves)

10

Rooted trees
* Siblings are stored as a linked list (have a pointer to the next sibling)
* Depth (or level) of a node: distance to the root

* Ex: depth of circled node is 2

* Height: the maximum depth of any node
* Ex: height of the tree below is 3

T.root

11

Tree Traversal °

* A traversal visits the nodes of a tree in
a systematic manner. G e e G 0

* In a preorder traversal, a node is visited before its descendants.

Algorithm preOrder(T, v)
visit(v) preOrder(T, T.root) visits ABEFCGHID
for each child w of v O(n) total time to visit every node
preOrder(w)

* In a postorder traversal, a node is visited after its descendants.

Algorithm postOrder(T, v)

for each child wofv ' postOrder(T, T.root) visits EFBGHICDA

postOrder(w) O(n) total time to visit every node

visit(v)

12

Binary rooted trees

* Binary trees: rooted trees in which each node can have at most two children.
* Children are an ordered pair (left, right)

* Applications:
* arithmetic expressions
 decision processes
* searching

—
N
SN

/

\
e
RN

/ Z
o

AN
/)
a9,

Inorder traversal of a binary tree

* [n an inorder traversal, each node is visited after its left subtree and before its
right subtree.

Algorithm inOrder(T, v)
if v has a left child -
inOrder(T, v.left) /\
visit(v) B C
if v has a right child /\ /\
inOrder(1, v.right)
& E F

inOrder(T, T.root) visits DBHEIAFCG
O(n) total time to visit every node

14

Euler tour traversal of a binary tree

e Generic traversal of a binary tree
* Includes preorder, postorder, and inorder traversals as special cases

* Walk around the tree and visit each node three times:
* on the left (preorder) +x2-51x32
* from below (inorder) 2x5-1+3x2
* on the right (postorder) 251-x32x+

15

