
Basic Data Structures
CLRS 10.1, 10.2, 10.4

(+ some supplemental material on trees)

Stacks
Queues

Linked Lists
Rooted Trees

Abstract Data Types (ADTs): typical operations

• Search(S, k)
• Insert(S, x)
• Delete(S, x)
• Minimum(S)
• Maximum(S)
• Successor(S,x)
• Predecessor(S,x)

Any specific application will usually require only a few of these to be implemented.

Stack
• Container that stores arbitrary objects
• Insertions and deletions follow last-in first-out (LIFO) scheme

3

push pop

top of stack

𝑂(1)

𝑂(1)

𝑂(1)

Applications of stack

Direct
• Page visited history in a web browser
• Undo sequence in a text editor
• Chain of method calls in C++ runtime environment

Indirect
• Auxiliary data structure for algorithms
• Component of other data structures

4

push pop

top of stack

Queue
• Container that stores arbitrary objects
• Insertions and deletions follow first-in first-out (FIFO) scheme

5

dequeueenqueue
tail head

𝑂(1)

𝑂(1)

Applications of queue

Direct
• Waiting lines
• Access to shared resources
• Multiprogramming

Indirect
• Auxiliary data structure for algorithms
• Component of other data structures

6

dequeueenqueue
tail head

Linked List
• A data structure consisting of a sequence of nodes, each of which stores an

element.
• Singly linked lists have nodes that contain only a link to the next node
• Doubly linked lists have nodes that contain a link to the previous and next node

7

tailhead

List-Insert(L, x) where x.key = 25

List-Delete(L, y) where y is the object with key 4

y

Linked List

8

tailhead

Θ(𝑛)

Θ(1)

Θ(1) Note: Deleting a given node x requires that we are
provided and therefore already have found the
node x

Deleting an element with a given key is Θ 𝑛 time.

Note: We are inserting a node x which has
three attributes:
• element value
• previous
• next

Storing a sequence of items: linked list or array?

9

• Arrays provide access by rank (number of elements preceeding it)
• Linked lists provide access by position (node element itself)

• A sequence can be implemented using either data type
• Rank-based operations are faster using an array
• Position-based operations are faster on a linked-list

• Ex: Access element at rank i
• O(1) in array
• O(n) in a linked list

• Ex: Remove an item at position p
• O(n) in an array
• O(1) in a linked-list

Rooted trees
• Stores elements hierarchically
• Nodes have a parent-child relationship
• A distinguished node is the root of the tree: the only element with no parent
• External node (leaf): a node with no children
• Internal node: a node with at least one child

10

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

root

external nodes
(leaves)

internal
nodes

Direct applications
• Organizational charts
• File systems
• Programming environments

Indirect applications
• Component of other data

structures

Rooted trees
• Siblings are stored as a linked list (have a pointer to the next sibling)
• Depth (or level) of a node: distance to the root
• Ex: depth of circled node is 2

• Height: the maximum depth of any node
• Ex: height of the tree below is 3

11

Tree Traversal

• A traversal visits the nodes of a tree in
a systematic manner.

• In a preorder traversal, a node is visited before its descendants.

preOrder(T, T.root) visits ABEFCGHID

• In a postorder traversal, a node is visited after its descendants.

postOrder(T, T.root) visits EFBGHICDA

12

A

B C D

E F G H I

Algorithm preOrder(T, v)
visit(v)
for each child w of v

preOrder(w)

Algorithm postOrder(T, v)
for each child w of v

postOrder(w)
visit(v)

O(𝑛) total time to visit every node

O(𝑛) total time to visit every node

Binary rooted trees
• Binary trees: rooted trees in which each node can have at most two children.
• Children are an ordered pair (left, right)

• Applications:
• arithmetic expressions
• decision processes
• searching

13

Inorder traversal of a binary tree
• In an inorder traversal, each node is visited after its left subtree and before its

right subtree.

inOrder(T, T.root) visits DBHEIAFCG

14

A

B C

F GD E

H I

Algorithm inOrder(T, v)
if v has a left child

inOrder(T, v.left)
visit(v)
if v has a right child

inOrder(T, v.right)

O(𝑛) total time to visit every node

Euler tour traversal of a binary tree
• Generic traversal of a binary tree
• Includes preorder, postorder, and inorder traversals as special cases
• Walk around the tree and visit each node three times:
• on the left (preorder) + x 2 – 5 1 x 3 2
• from below (inorder) 2 x 5 – 1 + 3 x 2
• on the right (postorder) 2 5 1 – x 3 2 x +

15

+

´

-2

5 1

3 2

L
B

R´

