Insertion Sort & Algorithm Analysis

CLRS 2.1 & 2.2

Sorting Problem

- Input: A sequence of *n* numbers a_1, a_2, \dots, a_n
- Output: A permutation (reordering) a'_1, a'_2, \dots, a'_n such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$

Motivation:

- Fundamental problem in CS
- Often used as a pre-processing step to solve other problems more efficiently
- Many approaches to solve

Q: Suppose you are given a set of 15 student papers, and you need to arrange them in alphabetical order. How do you sort them?

Insertion Sort

Idea: iteratively build up a sorted list on the left, **inserting** the next item into its appropriate position in the sorted list

INSERTION-SORT (A, n)for j = 2 to n key = A[j]// Insert A[j] into the sorted sequence A[1 ... j - 1]. i = j - 1while i > 0 and A[i] > key A[i + 1] = A[i] i = i - 1A[i + 1] = key

This algorithm sorts **in-place**, meaning it works directly on the provided array and only a constant amount of additional memory is used

Insertion Sort

Idea: iteratively build up a sorted list on the left, **inserting** the next item into its appropriate position in the sorted list

https://www.youtube.com/watch?v=8oJS1BMKE64

Algorithm Analysis

• An algorithm is a step-by-step procedure for performing some task (ex: sorting a set of integers) in a finite amount of time.

- We are concerned with the following properties:
 - Correctness
 - Efficiency (how fast it is, how many resources it needs)

```
INSERTION-SORT (A, n)already sortedyet to be processedfor j = 2 to nkey = A[j]key = A[j]// Insert A[j] into the sorted sequence A[1 ... j - 1].i = j - 1while i > 0 and A[i] > keyA[i + 1] = A[i]i = i - 1A[i + 1] = key
```

Loop invariant: At the start of each iteration of the for loop, the subarray A[1..j-1] consists of the elements originally in A[1..j-1], but in sorted order

We must show three things about a loop invariant:

- Initialization: It is true prior to the first iteration of the loop
- Maintenance: If it's true before an iteration of the loop, it remains true before the next iteration
- **Termination**: When the loop terminates, the invariant gives us a useful property that helps show the algorithm is correct

Running time

- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We often focus on the worst case running time.
 - Easier to analyze
 - Good standard of success

Q: How to determine run time?

(1) Experimental studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
 - Use a method like std::clock() to get an accurate measure of the actual running time
- Plot the results

Limitations of experimental studies

- Need to implement the algorithm
 - may be difficult
- Experiments done on a limited set of test inputs
 - may not be indicative of running times on other inputs not included in the experiment
- Difficult to compare
 - same hardware and software environments must be used

(2) Theoretical Analysis

- Takes into account all possible inputs
- Characterizes running time by *f(n)*, a function of the input size *n*
 - allows us to evaluate the speed of an algorithm independent of hardware/software environment
- Uses pseudocode, the preferred notation for describing algorithms
 - mix of natural language and high-level programming constructs that describe the main ideas behind an algorithm implementation
 - no implementation necessary
 - preferred notation for describing algorithms
 - language-agnostic, hiding implementation details

```
Algorithm arrayMax(A, n)

Input array A of n integers

Output maximum element of A

currentMax = A[1]

for i = 1 to n do

if A[i] > currentMax then

currentMax = A[i]

return currentMax
```

Pseudo-code details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration
 Algorithm method (arg [, arg...])
 Input ...
 Output ...

- Method call var.method (arg [, arg...])
- Return value
 return expression
- Expressions
 - = Assignment
 - == Equality testing
 - *n*² Superscripts and other mathematical formatting allowed

Random Access Machine (RAM) Model

- Views a computer as a generic one-processor
 - Simplistic
 - Instructions executed one after the other; no concurrent operations
 - No concern with memory hierarchy
- Instructions are those commonly found in real computers:
 - Arithmetic (add, subtract, multiply, divide, remainder, floor, ceiling)
 - Data movement (load, store, copy)
 - Control (conditional and unconditional branch, subroutine call and return)

• Each instruction takes a constant amount of time

RAM-model analyses are usually excellent predictors of performance on actual machines

Analysis of insertion sort			
INSERTION-SORT (A, n)	cost	times	
for $j = 2$ to n	c_1	п	
key = A[j]	C_2	n - 1	
// Insert $A[j]$ into the sorted sequence $A[1 j - 1]$.	0	n-1	
i = j - 1	C_4	n-1	
while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$	
A[i+1] = A[i]	C_6	$\sum_{j=2}^{n} (t_j - 1)$	
i = i - 1	C7	$\sum_{j=2}^{n} (t_j - 1)$	
A[i+1] = key	C_8	n-1	
Note: the number of times the while leap test is executed for that value of i			

Note: t_j is the number of times the while loop test is executed for that value of j

Best-case running time?

Worst-case running time?

- We can express the best-case running time as an + b for some constants a, b. Thus, this is a **linear function** of n.
- We can express the worst-case running time as $an^2 + bn + c$ for some constants a, b, c. Thus, this is a **quadratic function** of n.

Order of growth

It's the **rate of growth**, or the order of growth, of the running time which is most interesting. As *n* grows large, how does the algorithm perform?

Constant	pprox 1	
Logarithmic	$\approx \log I$	n
Linear	≈ n	
Quadratic	$\approx n^2$	
Cubic	≈ n ³	
Polynomial	$\approx \mathbf{n}^k$	(for $k \ge 1$)
Exponential	$pprox a^n$	(a > 1)

Growth rate is not affected by

- constant coefficients, nor
- lower-order terms

Ex: $10^2 n + 10^5$ is a **linear** function Ex: $10^5 n^2 + 10^8 n$ is a **quadratic** function We can say that insertion-sort has a worst-case running time of $\theta(n^2)$ "theta of n-squared"