
Insertion Sort &
Algorithm Analysis

CLRS 2.1 & 2.2

Sorting Problem
• Input: A sequence of n numbers 𝑎!, 𝑎", … , 𝑎#
• Output: A permutation (reordering) 𝑎′!, 𝑎′", … , 𝑎$# such that

𝑎′! ≤ 𝑎$" ≤ ⋯ ≤ 𝑎$#

Motivation:
• Fundamental problem in CS
• Often used as a pre-processing step to solve other problems more efficiently
• Many approaches to solve

Q: Suppose you are given a set of 15 student papers, and you need to arrange
them in alphabetical order. How do you sort them?

2

1, 2, 2, 3, 4, 5, 5, 6, 7, 84, 2, 6, 1, 3, 8, 5, 7, 5, 2

Insertion Sort
Idea: iteratively build up a sorted list on the left, inserting the next item into its
appropriate position in the sorted list

3

5 3 1 2 4

5 3 1 2 4

3 5 1 2 4

1 3 5 2 4

1 2 3 5 4

1 2 3 4 5

already sorted yet to be processed

This algorithm sorts in-place, meaning it works directly on the provided array
and only a constant amount of additional memory is used

Insertion Sort
Idea: iteratively build up a sorted list on the left, inserting the next item into its
appropriate position in the sorted list

4

already sorted yet to be processed

https://www.youtube.com/watch?v=8oJS1BMKE64

https://www.youtube.com/watch?v=8oJS1BMKE64

Algorithm Analysis
• An algorithm is a step-by-step procedure for performing some task (ex:

sorting a set of integers) in a finite amount of time.

• We are concerned with the following properties:
• Correctness
• Efficiency (how fast it is, how many resources it needs)

5

Algorithm OutputInput

6

Loop invariant: At the start of each iteration of the for loop, the subarray A[1..j-1]
consists of the elements originally in A[1..j-1], but in sorted order

We must show three things about a loop invariant:
• Initialization: It is true prior to the first iteration of the loop
• Maintenance: If it’s true before an iteration of the loop, it remains true before

the next iteration
• Termination: When the loop terminates, the invariant gives us a useful property

that helps show the algorithm is correct

already sorted yet to be processed

Running time
• The running time of an algorithm typically grows with the input size.

• Average case time is often difficult to determine.

• We often focus on the worst case running time.
• Easier to analyze
• Good standard of success

Q: How to determine run time?

7

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e
1000 2000 3000 4000

Input Size

best case
average case
worst case

(1) Experimental studies
• Write a program implementing the algorithm

• Run the program with inputs of varying size and
composition
– Use a method like std::clock() to get an

accurate measure of the actual running time

• Plot the results

Limitations of experimental studies
• Need to implement the algorithm
• may be difficult

• Experiments done on a limited set of test inputs
• may not be indicative of running times on other inputs not included in the experiment

• Difficult to compare
• same hardware and software environments must be used

8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
(m

s)

(2) Theoretical Analysis
• Takes into account all possible inputs

• Characterizes running time by f(n), a function of the input size n
– allows us to evaluate the speed of an algorithm independent of hardware/software

environment

• Uses pseudocode, the preferred notation for describing algorithms
–mix of natural language and high-level programming constructs that describe the main

ideas behind an algorithm implementation
– no implementation necessary
– preferred notation for describing algorithms
– language-agnostic, hiding implementation details

9

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax = A[1]
for i = 1 to n do
if A[i] > currentMax then
currentMax = A[i]

return currentMax

Pseudo-code details
• Control flow
• if … then … [else …]
• while … do …
• repeat … until …
• for … do …
• Indentation replaces braces

•Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

10

•Method call
var.method (arg [, arg…])

• Return value
return expression

• Expressions
= Assignment
== Equality testing
n2 Superscripts and other

mathematical formatting allowed

Random Access Machine (RAM) Model
• Views a computer as a generic one-processor
• Simplistic
• Instructions executed one after the other; no concurrent operations
• No concern with memory hierarchy

• Instructions are those commonly found in real computers:
• Arithmetic (add, subtract, multiply, divide, remainder, floor, ceiling)
• Data movement (load, store, copy)
• Control (conditional and unconditional branch, subroutine call and return)

• Each instruction takes a constant amount of time

RAM-model analyses are usually excellent predictors of performance on actual
machines

11

Analysis of insertion sort

12

Best-case running time?

Worst-case running time?

• We can express the best-case running time as 𝑎𝑛 + 𝑏 for some constants 𝑎, 𝑏.
Thus, this is a linear function of n.
• We can express the worst-case running time as 𝑎𝑛" + 𝑏𝑛 + 𝑐 for some

constants 𝑎, 𝑏, 𝑐. Thus, this is a quadratic function of n.

Note: 𝑡! is the number of times the while loop test is executed for that value of j

Order of growth
It’s the rate of growth, or the order of growth, of the running time which is
most interesting. As n grows large, how does the algorithm perform?

13

Constant » 1
Logarithmic » logn
Linear » n
Quadratic » n2

Cubic » n3

Polynomial » nk (for k ≥ 1)

Exponential » an (a > 1)

Growth rate is not affected by
– constant coefficients, nor
– lower-order terms

Ex: 102n + 105 is a linear function
Ex: 105n2 + 108n is a quadratic function

We can say that insertion-sort
has a worst-case running time
of 𝜽 𝒏𝟐 “theta of n-squared”

