
Scientific Computing
CS 100

Fall Semester, 2021

TOPIC: RECURSION
OUTLINE
• Definition of recursion
• Parts of a recursive algorithm
• Why use recursion?
• Writing Recursive Programs
• Recursive square – nested boxes
• Recursive count of items in a list
• Factorial Function
• Palindrome
• Drawing recursive tree
• Drawing a Sierpinski triangle

Definition of recursion
Recursion is the process of defining a problem (or the solution to a problem) in terms
of (a simpler version of) itself.

Generally speaking, recursion is the concept of well-defined self-reference. It is the
determination of a succession of elements by operating on one or more preceding
elements according to a rule or a formula involving a finite number of steps.

Example of recursive process: -Writing

Humans indulges in recursive process during writing The steps involve in the recursive process.

Parts of a recursive algorithm
All recursive algorithms must have the following:
1. Base Case (i.e., when to stop)
2. Work toward Base Cases
3. Recursive Call (i.e., call self)

Erroneous Recursive algorithm
A recursive algorithm that has no terminating
condition(Base Case) is very dangerous and viewed to
be ill-constructed or erroneous. And, such a situation
leads to a program crash.

What is wrong the program code below?

def hell():
print(“Hello Word”)

hello()
Fig 1.: Flow diagram of a recursive

algorithm.

Other problems with
recursive algorithm.

1. Stack Overflow
2. Memory Error

Why Use Recursion?

Recursion is preferred when the problem can be broken down

into smaller, repetitive tasks. These are the advantages of using

recursion:

1.Complex tasks can be broken down into simpler problems.

2.Code using recursion is usually shorter and more elegant.

3. Sequence generation is cleaner with recursion than with

iteration.

Writing Recursive Programs

At this stage and subsequently, we will illustrate how to write a

recursive program that will solve the following tasks outlined below.

• Drawing nested boxes

• Count of items in a list

• Factorial Function

• Palindrome

• Drawing recursive tree

• Drawing a Sierpinski triangle

Drawing nested boxes
The objective of this task is to draw a series of squares using a recursive function.
Figure 2 is a sample of what the output is ought to be.

Fig. 2: Expected output

import turtle as aTurtle
def drawSquare(aTurtle, side):

for i in range(4):
aTurtle.forward(side)
aTurtle.right(90)

def nestedBox(aTurtle, side):
if side>=1:

drawSquare(aTurtle, side)
nestedBox(aTurtle, side-5)

nestedBox(aTurtle,150)

Hands-on CodeOutput Additional Exercise

1. What statement is the base
case?

2. Modify the hands-on code by
reversing lines 8 and 10. Can
you explain the different
behavior?

3. Rewrite or modify the code to
draw nested boxes, where each
box is centered at the same
point.

1
2
3
4
5
6
7
8
9
10
11
12

Count of items in a list
The objective of this task is to compute the number of elements in a list using a
recursive call approach. Figure 3 is a diagram depicting the conceptual
representation of a list.

def countList(aList):
if aList==[]: #base case, empty list

return 0
else:

return 1+ countList(aList[1:])

aList=[2,3,4,5,6]
print('No of items in the list is:', countList(aList))

Hands-on Code

Output

Additional Exercise

1. Write a recursive function to
compute the sum of all the
numbers in a list

2. Write a recursive function to
find the minimum number in a list

3. Write a recursive function to
find the maximum number in a
list.

4. Write a recursive function to
reverse the characters in a string

Fig. 3: Items in a list

Factorial Function
A factorial function is defined as:

Our task is to implement this function a recursive call approach.

Factorial of a number using recursion

def recur_factorial(n):
if n == 1:

return n
else:

return n*recur_factorial(n-1)

num = int(input("Enter a number>"))

Hands-on Code Output

𝐟𝐚𝐜𝐭 𝐧 = ' 𝒏 ∗ 𝒇𝒂𝒄𝒕 𝒏 − 𝟏 𝒏 > 𝟎
𝟏 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

check if the number is negative

if num < 0:
print("Sorry, factorial does not exist for negative

numbers")
elif num == 0:

print("The factorial of 0 is 1")
else:

print("The factorial of", num, "is", recur_factorial(num))

1 2

Palindrome Function
A palindrome is a word or a phrase that is the same whether you read it backward
or forward, for example, the word: refer, madam,

import string

def is_palindrome(phrase):
base case
if len(phrase) < 2:

return True

divide into easier calculation
and recursive operation
return phrase[0] == phrase[-1] and \

is_palindrome(phrase[1:len(phrase) - 1])

Hands-on Code Output

text="civic"
text_is_a_palindrome = is_palindrome(text)

if text_is_a_palindrome:
print ("'{}' is a palindrome.".format(text))

else:
print("'{}' is not a palindrome.".format(text))

1 2

Drawing recursive tree
This tree is drawn using a simple recursive instructions as below:

Steps:
1. Draw a trunk of n units long
2. Turn to the right 30 deg., and draw another tree with a trunk n-15 units long
3. Turn to the left 60 deg., and draw another tree with a trunk n-15 units long

Below is the program code that implements our recursive instructions(steps 1-3)

import turtle
t = turtle.Turtle()
def tree(t, trunkLength):

if trunkLength < 5: # check for base case
return

else:
t.forward(trunkLength)
t.right(30)
tree(t, trunkLength-15)
t.left(60)
tree(t, trunkLength-15)
t.right(30)
t.backward(trunkLength)

t.up()
t.goto(0, -225)
t.down()
t.color("green", "green")
t.left(90) # face up
tree(t, 115)
t.hideturtle()

Hands-on Code

OutputAdditional Exercise

1. Rewrite the tree function using the conditional
truckLength >= 5 to check for the base case

2. Swap the rules for the trees so that it draws
the left side of the tree before the right side

3. Randomize the turning angle to be between
15 and 45 degree. See hint on
randomization at https://pynative.com/python-
random-randrange/

4. Instead of always subtracting by 15, try
subtracting a random amount between 5 and
25

5. Make the large branches brown and the small
branches green(Hint: choose a threshold value
for the length of the trunk and set the color
accordingly.

https://pynative.com/python-random-randrange/

Drawing a Sierpinski triangle
The Sierpinski triangle is a self-similar fractal. It consists of an equilateral triangle, with
smaller equilateral triangles recursively drawn on its remaining area. See figure 3 as
example of Sierpinski triangle.
Our task is to implement a recursive Sierpinski function that we accept 3 points as
parameter to draw a triangle and subdivide the triangle using the following rules:

import turtle
def drawTriangle(t, p1, p2, p3):

t.up()
t.goto(p1)
t.down()
t.goto(p2)
t.goto(p3)
t.goto(p1)

def midPoint(p1, p2):
return ((p1[0] +p2[0])/2.0, (p1[1]+p2[1])/2.0)

def sierpinski(t, p1, p2, p3, depth):
if depth>0:

sierpinski(t, p1, midPoint(p1, p2), midPoint(p1,
p3), depth-1)

Hands-on Code

Output

1

sierpinski(t, p2, midPoint(p2, p3),
midPoint(p2, p1), depth-1)

sierpinski(t, p3, midPoint(p3, p1),
midPoint(p3, p2), depth-1)
else: # base case

drawTriangle(t, p1, p2, p3)

t=turtle.Turtle()
t.color('darkorange')
sierpinski(t, [-225, -250], [225, -250], [0, 225] ,
5)
t.hideturtle()

2

Fig. 3: A Sierpinski triangle

1. For each of the corners of the
larger triangle, create a small
triangle using the corner and the
point halfway between the given
corner and the other two corners.

2. Specify the variable "depth" to
indicate the number of times the
original triangle will be sub-
divided. The depth is reduced by
one(1) whenever a triangle
undergoes recursive division.

3. We calculate the mid-point of a
line using the equations:

𝑚 ! =
"!#""

$
and 𝑚 % = &!#&"

$

References
• Python Programming in Context, 3rd edition, B. Miller, D. Ranum, & J. Anderson
• Recursion: https://www.cs.utah.edu/~germain/PPS/Topics/recursion.html
• Understanding Recursion With Examples: https://betterprogramming.pub/understanding-recursion-with-examples-

f74606fd6be0

https://www.cs.utah.edu/~germain/PPS/Topics/recursion.html
https://betterprogramming.pub/understanding-recursion-with-examples-f74606fd6be0

Extra Example on Drawing Fractal Tree

from turtle import *

speed('fastest')

turning the turtle to face upwards
rt(-90)

the acute angle between
the base and branch of the Y
angle = 30

function to plot a Y
def y(sz, level):

if level > 0:
colormode(255)
splitting the rgb range for green
into equal intervals for each level
setting the colour according
to the current level
pencolor(0, 255//level, 0)

drawing the base
fd(sz)

rt(angle)

recursive call for
the right subtree
y(0.8 * sz, level-1)

pencolor(0, 255//level, 0)

lt(2 * angle)

recursive call for
the left subtree
y(0.8 * sz, level-1)

pencolor(0, 255//level, 0)

rt(angle)
fd(-sz)

tree of size 80 and level 7
y(80, 7)

1 2
Code Output

Output from the execution the code
The code used the turtle library to implement the
drawing of the tree and for more information
about its usage, visit the link below:
https://docs.python.org/3/library/turtle.html

https://docs.python.org/3/library/turtle.html

