OUR COLOR VISION IS LIMITED

Designing with the mind in mind, Jeff Johnson, Chapter 4
YASMINE FAZAZI

My wife asked me which one I like best

Rods:

Overall Brightness

Cones:

Different frequencies of light (color)

Interesting fact: Men have more rods, some women have more cones

cones and freauencies

Picture from: Jeff johnson, DWMIM CH4

Low frequency: most sensitive to the middle (yellow) and low (red) frequencies.

Medium frequency: Most sensitive to high-frequency blues through the lower middlefrequency yellows and oranges.

High frequency:
Most sensitive to light at the upper end of the visible light spectrum-violets and blues Less sensitive and numerous

SUBTRACTION

Color opponent channels:

- Red-green difference signal channel:

Visual cortex subtract: (Signals coming over the optic nerves) - (Signals from the medium- and low frequency cones)

- Yellow-blue difference signal channel:

Other neurons in the visual cortex(Signals from the high- and lowfrequency cones)

- Luminance (or black-white) signal channel:

A third group of neurons in the visual cortex adds (the signals coming from the low- and medium-frequency cones)

VISION IS OPTIMIZED FOR CONTRAST, NOT BRIGHTNESS

Our visual system is considerably more sensitive to variations in color and brightness

DISTINGUISHING COLOR

Paleness

The paler 2 colors are, the harder it is to tell them apart

SiZe

The smaller objects are, the harder it is to perceive the color

SEP ARATION

The more separated colors are, the harder it is to tell the difference

COLOR BLINDNESS

COLOR BLINDNESS

Does not: imply no color perception. Does: implies that one or more of the color subtraction channels aren't operating normally, which makes it challenging to identify some color combinations.

Most common type: and GREEN
8% men and less than 0.5% women

COLOR BLINDNESS IN DESIGN

Theme

Customize the look of the Messapps workspace. Only you will see this.

- Aubergine

- Choco Mint

Accessible Themes

- Protanopia \& Deuteranopia

- Hoth

- Ochin

[^0]
EXTERNAL FACTORS

Variation among
 01 color Displays

Depending on technologies, software, settings

Grayscale Displays

Rare now but some devices still use grayscale displays

Display angle

Angles can alter colors

Ambient illumination.

The lighting can affect how we perceive colors

guidelines for color use

Distinguish colors by saturation and brightness

=> HIGH Contrast
=> Use grayscale testing

Use distinctive colors

Each color causes a strong

 signal on only one coloropponent channelSeparate strong opponent colors.

Placing opponent colors such as red and green or blue and yellow can be disturbing

THIS!

Avoid color pairs that color-blind

 people cannot distinguishDO NOT USE: dark red versus black, dark red versus dark green, blue versus purple, light green versus white.
USE: dark reds, blues, and violets against light yellows and greens.
=> Color blindness simulator

Use color redundantly with other cues

Use colors as well as other SIGNIFIERS such as symbols, icons, or shapes. Don't rely solely on color.

THANKS!

[^0]: In Slack, you can choose one of the preset accessible themes

