
Recursion

Drew Guarnera CS110: Imperative Problem Solving 1



What is recursion?

• Recursion is the process of 
defining a problem (or the 
solution to a problem) in terms 
of (a simpler version of) itself.

Drew Guarnera CS110: Imperative Problem Solving 2



Real World Analogy
• You are waiting at the front of a line and would like to know how 

many other people are in the line, but you can’t get out of line and 
you can only see the person behind you. How do you find out how 
many people are in the line? 

Drew Guarnera CS110: Imperative Problem Solving 3



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 4



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 5

How 
many?



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 6

How 
many??



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 7

How 
many?

?



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 8

How 
many?

?



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 9

How 
many?

?



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 10

How 
many?



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 11

Oh..



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 12

1



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 13

2



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 14

3



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 15

4



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 16

5



Recursion in CS

• Recursive solutions involve a function that calls itself

• This requires a base case
• The simplest solvable instance of the problem.

• Recursion isn’t always a good or efficient solution
• If the depth of the recursion (number of calls) is too large, the program crashes!
• Overhead associated with function calls

• Can produce elegant/cleaner solutions to certain problems

Drew Guarnera CS110: Imperative Problem Solving 17



Triangle Numbers

• The nth triangle number Tn is: 1 + 2 + 3 … + n

• T0 is 0 (empty sum)

• T4 = 1 + 2 + 3 + 4 = 10

Drew Guarnera CS110: Imperative Problem Solving 18



Triangle Numbers

• The nth triangle number Tn is: 1 + 2 + 3 … + n

• T0 is 0 (empty sum)

• T4 = 1 + 2 + 3 + 4 = 10

• T4 = T3 + 4

Drew Guarnera CS110: Imperative Problem Solving 19

T3



Triangle Numbers

• The nth triangle number Tn is: 1 + 2 + 3 … + n

• T0 is 0 (empty sum)

• T4 = 1 + 2 + 3 + 4 = 10

• T4 = T3 + 4

Drew Guarnera CS110: Imperative Problem Solving 20

T3 Tn =

otherwiseTn-1 + n

0 if n = 0



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 21



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 22

n = 4

The Call Stack

main()



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 23

n = 4

The Call Stack

main()

triangle_num(4) return 4 + ?



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 24

n = 4

The Call Stack

main()

triangle_num(4)

triangle_num(3) return 3 + ?

return 4 + ?



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 25

n = 4

The Call Stack

main()

triangle_num(4)

triangle_num(3)

triangle_num(2) return 2 + ?

return 3 + ?

return 4 + ?



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 26

n = 4

The Call Stack

main()

triangle_num(4)

triangle_num(3)

triangle_num(2)

triangle_num(1) return 1 + ?

return 2 + ?

return 3 + ?

return 4 + ?



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 27

n = 4

The Call Stack

main()

triangle_num(4)

triangle_num(3)

triangle_num(2)

triangle_num(1)

triangle_num(0) return 0

return 1 + ?

return 2 + ?

return 3 + ?

return 4 + ?



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 28

n = 4

The Call Stack

main()

triangle_num(4)

triangle_num(3)

triangle_num(2)

triangle_num(1) return 1 + 0

return 2 + ?

return 3 + ?

return 4 + ?



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 29

n = 4

The Call Stack

main()

triangle_num(4)

triangle_num(3)

triangle_num(2) return 2 + 1

return 3 + ?

return 4 + ?



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 30

n = 4

The Call Stack

main()

triangle_num(4)

triangle_num(3) return 3 + 3

return 4 + ?



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 31

n = 4

The Call Stack

main()

triangle_num(4) return 4 + 6



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}

Drew Guarnera CS110: Imperative Problem Solving 32

n = 4

The Call Stack

main() 10



Wait you said it isn’t always good…

Drew Guarnera CS110: Imperative Problem Solving 33



Fibonacci Recursive

long fibbo(int n) {
if (n == 0)

return 0;
else if (n == 1)

return 1;
else

return fibbo(n - 1) + 
fibbo(n - 2);

}

Drew Guarnera CS110: Imperative Problem Solving 34



Fibonacci Recursive

long fibbo(int n) {
if (n == 0)

return 0;
else if (n == 1)

return 1;
else

return fibbo(n - 1) + 
fibbo(n - 2);

}

Drew Guarnera CS110: Imperative Problem Solving 35

f(5)

f(4) f(3)
f(3)

f(2)

f(2) f(1)

1

f(0)f(1) f(0)f(1)
f(2)

11

1

f(1)

10 0f(0)f(1)

0



Fibonacci Recursive

long fibbo(int n) {
if (n == 0)

return 0;
else if (n == 1)

return 1;
else

return fibbo(n - 1) + 
fibbo(n - 2);

}

Drew Guarnera CS110: Imperative Problem Solving 36

f(5)

f(4) f(3)
f(3)

f(2)

f(2) f(1)

1

f(0)f(1) f(0)f(1)
f(2)

11

1

f(1)

10 0f(0)f(1)

0

Lots of duplicated work!



Fibonacci Recursive

long fibbo(int n) {
if (n == 0)

return 0;
else if (n == 1)

return 1;
else

return fibbo(n - 1) + 
fibbo(n - 2);

}

Drew Guarnera CS110: Imperative Problem Solving 37

f(5)

f(4) f(3)
f(3)

f(2)

f(2) f(1)

1

f(0)f(1) f(0)f(1)
f(2)

11

1

f(1)

10 0f(0)f(1)

0

Lots of duplicated work! LOTS!



Fibonacci Recursive

long fibbo(int n) {
if (n == 0)

return 0;
else if (n == 1)

return 1;
else

return fibbo(n - 1) + 
fibbo(n - 2);

}

Drew Guarnera CS110: Imperative Problem Solving 38

f(5)

f(4) f(3)
f(3)

f(2)

f(2) f(1)

1

f(0)f(1) f(0)f(1)
f(2)

11

1

f(1)

10 0f(0)f(1)

0

Lots of duplicated work! LOTS!
As the tree of calls gets bigger, this gets even worse!


