
Recursion
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What is recursion?

• Recursion is the process of 
defining a problem (or the 
solution to a problem) in terms 
of (a simpler version of) itself.
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Real World Analogy
• You are waiting at the front of a line and would like to know how 

many other people are in the line, but you can’t get out of line and 
you can only see the person behind you. How do you find out how 
many people are in the line? 
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Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 12

1



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 13

2



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 14

3



Real World Analogy
• Ask the person behind us how many people are in the line. 

Drew Guarnera CS110: Imperative Problem Solving 15

4



Real World Analogy
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Recursion in CS

• Recursive solutions involve a function that calls itself

• This requires a base case
• The simplest solvable instance of the problem.

• Recursion isn’t always a good or efficient solution
• If the depth of the recursion (number of calls) is too large, the program crashes!
• Overhead associated with function calls

• Can produce elegant/cleaner solutions to certain problems
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Triangle Numbers

• The nth triangle number Tn is: 1 + 2 + 3 … + n

• T0 is 0 (empty sum)

• T4 = 1 + 2 + 3 + 4 = 10
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Triangle Numbers

• The nth triangle number Tn is: 1 + 2 + 3 … + n

• T0 is 0 (empty sum)

• T4 = 1 + 2 + 3 + 4 = 10

• T4 = T3 + 4
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T3 Tn =

otherwiseTn-1 + n

0 if n = 0



Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}
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Triangle Numbers
unsigned triangle_num(unsigned n) {
if (n == 0) {
// base case
return 0;

}
else {
return n + triangle_num(n – 1);

}
}
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n = 4

The Call Stack

main() 10



Wait you said it isn’t always good…
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Fibonacci Recursive

long fibbo(int n) {
if (n == 0)

return 0;
else if (n == 1)

return 1;
else

return fibbo(n - 1) + 
fibbo(n - 2);

}
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Lots of duplicated work! LOTS!
As the tree of calls gets bigger, this gets even worse!


