
Resizing Arrays

Drew Guarnera CS110: Imperative Problem Solving 1



STACK allocated arrays cannot change size!

Drew Guarnera CS110: Imperative Problem Solving 2

int main() {
// Fixed size array on the stack
int values[5] = {1, 2, 3, 4, 5};

for (size_t i = 0; i < 5; ++i)
printf(“%i\n”, values[i]);

return 0;
}



Only HEAP arrays can resize

Drew Guarnera CS110: Imperative Problem Solving 3

int main() {
// Dynamic array on the heap
int *values = calloc(5, sizeof(int));

for (size_t i = 0; i < 5; ++i)
printf(“%i\n”, values[i]);

free(values);

return 0;
}



Refresher: Array Storage

• Arrays are stored in CONTIGUOUS areas of memory
• Starting at the beginning of the array, each element in the array will follow 

the previous element consecutively in memory

• This is required due to the way we access array elements
• The array variable is a pointer to the first element of the array (offset of 0)
• Subsequent elements are found at the starting location + an offset
• This is what happens when we request array[n] where 0 <= n < the array size.

Drew Guarnera CS110: Imperative Problem Solving 4



We can acquire more memory for our heap arrays in one of two ways 
depending on our memory layout.

Resizing an Array

Drew Guarnera CS110: Imperative Problem Solving 5

5 30 -11 6

array



There is adequate free space next to the current array

Resizing an Array: Condition #1

Drew Guarnera CS110: Imperative Problem Solving 6

5 30 -11 6

array



There is adequate free space next to the current array

Resizing an Array: Condition #1

Drew Guarnera CS110: Imperative Problem Solving 7

5 30 -11 6

We can grow our array in place and use the spare memory

2 1

array



There is NOT enough free space next to the current array

Resizing an Array: Condition #2

Drew Guarnera CS110: Imperative Problem Solving 8

5 30 -11 6

array array_two

’C’ ‘A’ ‘T’ ‘\0’



There is NOT enough free space next to the current array

Resizing an Array: Condition #2

Drew Guarnera CS110: Imperative Problem Solving 9

5 30 -11 6

array array_two

’C’ ‘A’ ‘T’ ‘\0’

5 30 -11 6

1) Copy the old array to a larger memory location



There is NOT enough free space next to the current array

Resizing an Array: Condition #2

Drew Guarnera CS110: Imperative Problem Solving 10

5 30 -11 6

array array_two

’C’ ‘A’ ‘T’ ‘\0’

5 30 -11 6

1) Copy the old array to a larger memory location
2) Free the old array



There is NOT enough free space next to the current array

Resizing an Array: Condition #2

Drew Guarnera CS110: Imperative Problem Solving 11

5 30 -11 6

array array_two

’C’ ‘A’ ‘T’ ‘\0’

5 30 -11 6

1) Copy the old array to a larger memory location
2) Free the old array
3) Update the pointer



There is NOT enough free space next to the current array

Resizing an Array: Condition #2

Drew Guarnera CS110: Imperative Problem Solving 12

5 30 -11 6

array array_two

’C’ ‘A’ ‘T’ ‘\0’

5 30 -11 6 2 1

1) Copy the old array to a larger memory location
2) Free the old array
3) Update the pointer



The realloc Function

• Good news, the realloc function will take care of this
• void *realloc(void *ptr, size_t size)
• Returns: a void pointer
• Parameters: pointer to the original array, new size in bytes

• If there is consecutive free space next to the array realloc…
• acquires extra space and returns the original pointer

• If there is insufficient space realloc…
• creates a new array, copies the old data to the new array, frees old memory, 

and returns a pointer to the new array location

Drew Guarnera CS110: Imperative Problem Solving 13


