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What is a Stack?

• A stack is a type of data structure

• Think of it like a stack of papers 
or dishes

• We can:
• add items to the top with a PUSH
• remove items from the top with a 
POP
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The Call Stack

• Often just called “the stack”.

• Every running program has its own stack

• Each time a function is called a stack frame is pushed onto the stack
• The function at the top of the stack is the active function

• A stack frame consists of:
• Return address (where in the code the function was called)
• Automatic variables used by the function
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Automatic Variables

• All the variables we have been using so far have been automatic 
variables.

• When a function is called, memory (RAM) is allocated for local 
variables and function parameters.

• The memory is automatically released when the function returns (or 
reaches the end in the case of a void function).
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How does this work?
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int sum(int a, int b) {
return a + b;

}

int main() {
int value = sum(1, 2);
printf(“%i\n”, value);
return 0;

}
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When printf is
complete, we can
remove the function
from the stack and 
resume the main.
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When main returns
it is also removed from
the the stack and the
program quits.
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You can try this out for yourself!

• Python tutor can visualize the running of a single file C program and 
show the call stack

• http://pythontutor.com/c.html#mode=edit
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