
The Call Stack

Drew Guarnera CS110: Imperative Problem Solving 1



Programs in Memory

Drew Guarnera CS110: Imperative Problem Solving 2

Command Line Arguments
and Environment Variables

Program Text

Initialized Data

Uninitialized Data

Heap

Stack



Programs in Memory

Drew Guarnera CS110: Imperative Problem Solving 3

Command Line Arguments
and Environment Variables

Program Text

Initialized Data

Uninitialized Data

Heap

Stack

This area of memory gets used each time you
call a function or request dynamic memory.



Programs in Memory

Drew Guarnera CS110: Imperative Problem Solving 4

Command Line Arguments
and Environment Variables

Program Text

Initialized Data

Uninitialized Data

Heap

Stack

This area of memory gets used each time you
call a function or request dynamic memory.



What is a Stack?

• A stack is a type of data structure

• Think of it like a stack of papers 
or dishes

• We can:
• add items to the top with a PUSH
• remove items from the top with a 
POP

Drew Guarnera CS110: Imperative Problem Solving 5



The Call Stack

• Often just called “the stack”.

• Every running program has its own stack

• Each time a function is called a stack frame is pushed onto the stack
• The function at the top of the stack is the active function

• A stack frame consists of:
• Return address (where in the code the function was called)
• Automatic variables used by the function

Drew Guarnera CS110: Imperative Problem Solving 6



Automatic Variables

• All the variables we have been using so far have been automatic 
variables.

• When a function is called, memory (RAM) is allocated for local 
variables and function parameters.

• The memory is automatically released when the function returns (or 
reaches the end in the case of a void function).

Drew Guarnera CS110: Imperative Problem Solving 7



How does this work?

Drew Guarnera CS110: Imperative Problem Solving 8

int sum(int a, int b) {
return a + b;

}

int main() {
int value = sum(1, 2);
printf(“%i\n”, value);
return 0;

}

The Stack



How does this work?
int sum(int a, int b) {
return a + b;

}

int main() {
int value = sum(1, 2);
printf(“%i\n”, value);
return 0;

}

Drew Guarnera CS110: Imperative Problem Solving 9

main()

value = ?

The main function
is pushed to the stack
with its variables 
when the program
starts.

The Stack

Active Function



How does this work?
int sum(int a, int b) {
return a + b;

}

int main() {
int value = sum(1, 2);
printf(“%i\n”, value);
return 0;

}

Drew Guarnera CS110: Imperative Problem Solving 10

main()

value = ?

Once we reach the
call to sum, we need
to push that to the 
stack.

The Stack

Active Function

sum()

a = 1 b = 2



How does this work?
int sum(int a, int b) {
return a + b;

}

int main() {
int value = sum(1, 2);
printf(“%i\n”, value);
return 0;

}

Drew Guarnera CS110: Imperative Problem Solving 11

main()

value = ?

When we return from
sum we pop sum
off the stack and go
back to the main
function.

The Stack

Active Function

sum()

a = 1 b = 2



How does this work?
int sum(int a, int b) {
return a + b;

}

int main() {
int value = sum(1, 2);
printf(“%i\n”, value);
return 0;

}

Drew Guarnera CS110: Imperative Problem Solving 12

Printf is also a function
so that will have to
be pushed on the
stack.

The Stack

main()

value = 3

Active Function

printf()

“%i\n” 3



How does this work?
int sum(int a, int b) {
return a + b;

}

int main() {
int value = sum(1, 2);
printf(“%i\n”, value);
return 0;

}

Drew Guarnera CS110: Imperative Problem Solving 13

When printf is
complete, we can
remove the function
from the stack and 
resume the main.

The Stack

main()

value = 3

Active Function



How does this work?
int sum(int a, int b) {
return a + b;

}

int main() {
int value = sum(1, 2);
printf(“%i\n”, value);
return 0;

}

Drew Guarnera CS110: Imperative Problem Solving 14

When main returns
it is also removed from
the the stack and the
program quits.

The Stack



You can try this out for yourself!

• Python tutor can visualize the running of a single file C program and 
show the call stack

• http://pythontutor.com/c.html#mode=edit

Drew Guarnera CS110: Imperative Problem Solving 15

http://pythontutor.com/c.html

