
Number Representation

Drew Guarnera CS110: Imperative Problem Solving 1

How do computers store numbers?

• All data in a computer is stored as binary using series of 1’s and 0’s
• The way in which the bits are organized gives them meaning

• Each binary digit is called a bit

• In the C programming language, each variable has a fixed number of
bits that is can use to represent different values

Drew Guarnera CS110: Imperative Problem Solving 2

Decimal Representation

• People tend to do math and represent numerical values using a
decimal representation
• All numbers are made up of the digits 0-9

• How many numbers can we make with:
• one decimal digit? 0 to 9 = 10 possible values (101)
• two decimal digits? 0 to 99 = 100 possible values (102)
• each time we add a digit we increase our value range by a power of 10

• n digits = 10n possible values

Drew Guarnera CS110: Imperative Problem Solving 3

Binary Representation

• All numbers are made up of the binary digits (bits) 0 or 1

• How many numbers can we make with:
• one bit? 0, 1 = 2 possible values (21)
• two bits? 0, 01, 10, 11 = 4 possible values (22)
• each time we add a digit we increase our value range by a power of 2

• n digits = 2n possible values

Drew Guarnera CS110: Imperative Problem Solving 4

Storing Binary Data

• We group bits together in units of 8 called bytes.

• A byte is the smallest unit of data we can access from memory (RAM)

• Data types in C are used to represent values
• Data types have a certain number of bits available for storage
• The amount of storage is always in groups of 8 bits (1 byte)

Drew Guarnera CS110: Imperative Problem Solving 5

Representing Decimal Values as Binary

• Remember that decimal is base 10 and binary is base 2

• In binary, each digit represents a power of 2 starting with 20

• When we translate from binary to decimal, we add up the powers of
two positions that have a one
• 0 0 0 0 1 0 1 0 = 23 + 21 = 8 + 2 = 10

Drew Guarnera CS110: Imperative Problem Solving 6

27 26 25 24 23 22 21 20

0 0 0 0 1 0 1 0

How to convert decimal to Binary?

1.Divide the number by 2
2.Get the integer quotient

for the next iteration
3.Get the remainder for

the binary digit
4.Repeat the steps until

the quotient is equal to 0

Drew Guarnera CS110: Imperative Problem Solving 7

Convert 13 to binary

Divide by 2 Quotient Remainder Bit #

13 / 2 6 1 0

6 / 2 3 0 1

3 / 2 1 1 2

1 / 2 0 1 3

=> 1101

Int Data Type

• Stores positive and negative integer values

• According to the C standard must be at least 16 bits (2 bytes)
• Most modern computers use 32 bits (4 bytes)

• Assuming we have 32 bits for an int, that is 232 different numbers
• Can be positive, negative, or zero
• 231 – 1 positive numbers, 231 negative numbers, and 0

• Range: - 231 to 231-1 (-2,147,483,648 to 2,147,483,647)

• A 32-bit unsigned int only stores positive numbers 0 to 232 - 1

Drew Guarnera CS110: Imperative Problem Solving 8

Float Data Type

• Represents real numbers
• Values with decimal precision

• Uses 32 bits of storage (4 bytes)
• Range is wider than an int
• Max value is ~3.4*1038

• While there are infinite values in the range only 232 values can be
represented
• This leads to approximation

Drew Guarnera CS110: Imperative Problem Solving 9

Double Data Type

• Like float and stores real numbers (decimal values)

• Unlike float, the storage is doubled to 64 bits (8 bytes)

• Max value is ~1.8*10308

• Much greater precision

• Usually better to use double than float
• Unless you are storing a very large number of decimal values or have limited

resources

Drew Guarnera CS110: Imperative Problem Solving 10

Data Types on Different Platforms

• _Bool: 8
• char: 8
• short int: 16
• int: 32
• long int: 64
• long long int: 64
• float: 32
• double: 64
Drew Guarnera CS110: Imperative Problem Solving 11

• _Bool: 8
• char: 8
• short int: 16
• int: 32
• long int: 32
• long long int: 64
• float: 32
• double: 64

• _Bool: 8
• char: 8
• short int: 16
• int: 16
• long int: 32
• long long int: 64
• float: 32
• double: NA

Arduino (8-bit
microcontroller)

Raspberry Pi
(32-bit OS)

Mac Laptop
(64-bit OS)

