
Data
StructuresC++ Data
Structures

J O N E S A N D B A R T L E T T C O M P U T E R S C I E N C E

A Laboratory Course in

James Robergé
Stefan Brandle
David Whittington

Second Edition

Data
Structures
Data
Structures

S e c o n d E d i t i o n

C++

A Laboratory Course in

James Robergé
Illinois Institute of Technology

Stefan Brandle
Taylor University

David Whittington
Taylor University

Copyright © 2003 by Jones and Bartlett Publishers, Inc.

Cover image © Douglas E. Walker / Masterfile

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized
in any form, electronic or mechanical, including photocopying, recording, or any information storage or
retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Robergé, Jim.
A laboratory course in C++ data structures / James Robergé, Stefan Brandle, David Whittington.

p. cm.
ISBN 0-7637-1976-5
1. C++ (Computer program language) I. Brandle, Stefan. II. Whittington, David. III.

Title.

QA76.73.C153R58 2003
005.13’3—dc21

2002044401

Editor-in-Chief, College: J. Michael Stranz
Production Manager: Amy Rose
Associate Editor: Theresa DiDonato
Associate Production Editor: Karen C. Ferreira
Production Assistant: Jenny L. McIsaac
Senior Marketing Manager: Nathan J. Schultz
Composition: Northeast Compositors
Cover Design: Night & Day Design
Manufacturing Buyer: Therese Bräuer
Printing and Binding: Courier Stoughton
Cover Printing: Courier Stoughton

Printed in the United States of America
07 06 05 04 03 10 9 8 7 6 5 4 3 2 1

World Headquarters
Jones and Bartlett Publishers
40 Tall Pine Drive
Sudbury, MA 01776
978-443-5000
info@jbpub.com
www.jbpub.com

Jones and Bartlett Publishers
Canada

2406 Nikanna Road
Mississauga, ON L5C 2W6
CANADA

Jones and Bartlett Publishers
International

Barb House, Barb Mews
London W6 7PA
UK

To my son Edward, who lets me see a world of wonder through his eyes.
And to my wife, Ruby, who creates that world.

—James Robergé

To Christina, Anna, and Esther: my queen and little princesses.

—Stefan Brandle

In memory of my kitty Sweetpea.

—David Whittington

Preface to the Second Edition

We have used James Robergé’s laboratory manual for three years at Taylor University.
The approach and style of the original manual made it an extremely effective teaching
tool. It has been central to our data structures courses, but aspects of it are now out of
date because of changes in the C++ language. Our goal in creating this revision was not
to deviate from Robergé’s original vision of the laboratory experience, which he
developed through considerable experimentation and refinement, but rather, to provide
an update to the material presented throughout the labs. Significant modifications have
been made to reflect changes in the C++ language and current common object-oriented
practices. We have also added some new material and made some changes to the
content and ordering of material in an attempt to make it easier to pair this laboratory
manual with existing textbooks.

Overview of Changes
The code has been updated to comply with ANSI C++ standards. This includes the
following changes:

• Error handling is now performed using exception, instead of assert, statements.
Assert statements are still discussed. They are not, however, used in the source code
included in the book or on the Web.

• All header files have been changed from the now deprecated <*.h> to the modern
ANSI C++ <*>.

• The standard namespace is used in all appropriate places.

The coding style has been updated to fall in line with practices common to modern
object-oriented languages. The following changes have been made:

• Functions that return Boolean values are prefaced with ‘is’.
• Functions that in some way interact with and return private data from within a

class are now prefaced with ‘get’.
• Functions that are passed values used to set private data in a class are now

prefaced with ‘set’.

vi | Preface

The order and pace of the information presented has been changed to follow available
textbooks more closely.

• Dynamic memory allocation has been removed from the point list lab and is now
introduced starting with Lab 3, the array based list.

• Templates are now introduced with Lab 5, the stack ADT.
• The string, heap, and performance evaluation labs are no longer included as part of

the recommended lab order. They are, however, still included in order to provide
material for multi-quarter and multi-semester courses, as optional homework
assignments, and for those who wish to use them in the place of standard labs.

• Two labs have been added: “Lab 8: Copying and Comparing ADTs”—which covers
data structure assignment and comparison operators, and copy and convert
constructors—and “Lab 14: The Hash Table ADT”.

Note: We do not use STL in this book. However, the STL implementation of a data
structure could be substituted for the student’s implementation in most situations where
an application program is to be implemented.

Course Planning Guide for the Instructor
The following table is provided to guide you in choosing laboratories and determining
sequencing constraints. The recommendations marked as Required are laboratories that
we consider to contain essential material and, consequently, need to be assigned. If the
students do not master the material in those laboratories, they will be at a severe
disadvantage when working on later labs. Suggested laboratories are those that we
recommend assigning as a matter of course. Although we strongly recommend
assigning them, they are not essential to successful completion of later labs. Optional
laboratories are offered for your use based on course emphasis and available time.

Preface | vii

La
b

Co
nt

en
t

An
d

Pl
an

ni
ng

 G
ui

de

ST
AN

DA
RD

 L
AB

S

La
b

#
La

b
N

am
e

Co
nt

en
t

Re
co

m
m

en
da

tio
ns

 a
nd

 C
om

m
en

ts

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lo
gb

oo
k

Po
in

t
Li

st

Li
st

O
rd

er
ed

 L
is

t

St
ac

k

Q
ue

ue

Si
ng

ly
-L

in
ke

d
Li

st

Co
py

in
g

an
d

Co
m

pa
rin

g
AD

Ts

Do
ub

ly
-L

in
ke

d
Li

st

Re
cu

rs
io

n

Bi
na

ry
 S

ea
rc

h
Tr

ee

Ex
pr

es
si

on
 T

re
e

G
ra

ph

H
as

h
Ta

bl
e

Cl
as

se
s

an
d

ab
st

ra
ct

 d
at

a
ty

pe
s

(A
DT

s)
, f

un
ct

io
n

an
d

op
er

at
or

 o
ve

rlo
ad

in
g.

Si
m

pl
e

lis
t

an
d

cu
rs

or
 c

on
ce

pt
, s

im
pl

e
O

pe
nG

L
gr

ap
hi

cs
ap

pl
ic

at
io

n.

Li
st

 o
pe

ra
tio

ns
, d

yn
am

ic
 m

em
or

y
al

lo
ca

tio
n,

 e
xc

ep
tio

ns
,

Bi
g-

O
 a

na
ly

si
s.

In
he

rit
an

ce
, s

or
tin

g
ba

se
d

on
 k

ey
s,

se
ar

ch
in

g.

Te
m

pl
at

es
, p

os
tf

ix
 e

xp
re

ss
io

ns
, l

in
ke

d
im

pl
em

en
ta

tio
n

w
ith

 d
yn

am
ic

 n
od

e
al

lo
ca

tio
n,

 a
nd

 a
rr

ay
-b

as
ed

im
pl

em
en

ta
tio

n.

Si
m

ul
at

io
n,

 d
at

a
st

ru
ct

ur
e

m
em

or
y

ut
ili

za
tio

n
ca

lc
ul

at
io

n.

An
al

yz
e

ef
fic

ie
nc

y
of

 li
nk

ed
 s

tr
uc

tu
re

s,
en

ha
nc

e
pe

rf
or

m
an

ce
 t

hr
ou

gh
 im

pl
em

en
ta

tio
n

an
al

ys
is

.

De
ta

ils
 o

f C
++

 c
op

y
an

d
co

m
pa

ris
on

 o
pe

ra
to

rs
.

Ef
fic

ie
nc

y
co

m
pa

ris
on

 w
ith

 s
in

gl
y-

lin
ke

d
lis

t.

Re
cu

rs
iv

e
pr

ob
le

m
s

us
in

g
lin

ke
d

lis
ts

, d
et

er
m

in
in

g
be

ha
vi

or
 o

f u
ne

xp
la

in
ed

 re
cu

rs
iv

e
fu

nc
tio

ns
, c

on
ve

rs
io

n
of

 re
cu

rs
iv

e
al

go
rit

hm
s

to
 it

er
at

iv
e

fo
rm

.

In
tr

od
uc

tio
n

to
 t

re
e

st
ru

ct
ur

es
, a

pp
lic

at
io

n
to

 d
at

ab
as

es
.

U
se

 o
f t

re
es

 t
o

re
pr

es
en

t
hi

er
ar

ch
ic

al
 d

at
a.

Ad
ja

ce
nc

y
m

at
rix

 re
pr

es
en

ta
tio

n
of

 g
ra

ph
s,

sh
or

te
st

 p
at

h
al

go
rit

hm
s.

H
as

h
fu

nc
tio

ns
, u

ni
fo

rm
 k

ey
 d

is
tr

ib
ut

io
n,

 p
er

fo
rm

an
ce

an
al

ys
is

.

Re
co

m
m

en
da

tio
n:

 S
ug

ge
st

ed
N

ot
e:

 S
tu

de
nt

s
fr

eq
ue

nt
ly

 n
ee

d
to

 b
e

re
ac

qu
ai

nt
ed

 w
ith

 C
++

 c
la

ss
es

.

Re
co

m
m

en
da

tio
n:

 O
pt

io
na

l

Re
co

m
m

en
da

tio
n:

 R
eq

ui
re

d
N

ot
e:

 F
ut

ur
e

la
bs

 d
ep

en
d

on
 t

he
 c

on
ce

pt
s

an
d

co
de

 in
tr

od
uc

ed
 in

 t
hi

s
la

b.

Su
gg

es
te

d
re

ad
in

g:
 A

pp
en

di
x

1,
 3

Re
co

m
m

en
da

tio
n:

 S
ug

ge
st

ed
Pr

er
eq

ui
si

te
: L

ab
 3

Re
co

m
m

en
da

tio
n:

 R
eq

ui
re

d
N

ot
e:

 T
em

pl
at

es
 a

nd
 li

nk
ed

 s
tr

uc
tu

re
s

ar
e

us
ed

 t
hr

ou
gh

ou
t

re
st

 o
f b

oo
k.

Ar
ra

y-
ba

se
d

im
pl

em
en

ta
tio

n
m

ay
 b

e
sk

ip
pe

d
if

de
si

re
d.

Su
gg

es
te

d
re

ad
in

g:
 A

pp
en

di
x

1

Re
co

m
m

en
da

tio
n:

 O
pt

io
na

l

Re
co

m
m

en
da

tio
n:

 R
eq

ui
re

d

Re
co

m
m

en
da

tio
n:

 R
eq

ui
re

d
N

ot
e:

 E
ss

en
tia

l f
or

 im
pl

em
en

ta
tio

n
of

 c
om

pl
ex

 C
++

 d
at

a
st

ru
ct

ur
es

.
Pr

er
eq

ui
si

te
: L

ab
 7

Re
co

m
m

en
da

tio
n:

 O
pt

io
na

l

Re
co

m
m

en
da

tio
n:

 R
eq

ui
re

d
N

ot
e:

 L
ay

s
th

e
fo

un
da

tio
n

fo
r u

se
 o

f r
ec

ur
si

on
 in

 s
uc

ce
ed

in
g

la
bs

.
Pr

er
eq

ui
si

te
: L

ab
 7

Re
co

m
m

en
da

tio
n:

 S
ug

ge
st

ed

Re
co

m
m

en
da

tio
n:

 O
pt

io
na

l

Re
co

m
m

en
da

tio
n:

 O
pt

io
na

l

Re
co

m
m

en
da

tio
n:

 O
pt

io
na

l

viii | Preface

AD
DI

TI
O

N
AL

LA
BS

La
b

#
La

b
N

am
e

Co
nt

en
t

Re
co

m
m

en
da

tio
ns

 a
nd

 C
om

m
en

ts

A B C AP
PE

N
DI

X

1 2 3

St
rin

g

H
ea

p

Pe
rf

or
m

an
ce

 E
va

lu
at

io
n

C+
+

Pr
og

ra
m

 V
al

id
at

io
n

C+
+

I/O
 R

ef
er

en
ce

C+
+

Po
in

te
rs

C-
st

rin
gs

, o
ve

rlo
ad

in
g

op
er

at
or

s,
co

py
 c

on
st

ru
ct

or
.

H
ea

p
so

rt
, p

rio
rit

y
qu

eu
e,

 s
ch

ed
ul

in
g.

Pe
rf

or
m

an
ce

 m
ea

su
re

m
en

t
te

ch
ni

qu
es

, s
ea

rc
hi

ng
 a

nd
so

rt
in

g
al

go
rit

hm
s.

C+
+

ex
ce

pt
io

ns
 a

nd
 a

ss
er

t
st

at
em

en
ts

.

An
 e

xp
la

na
tio

n
of

 I/
O

 s
tr

ea
m

s
an

d
re

fe
re

nc
e

lis
tin

g
of

m
em

be
r f

un
ct

io
ns

.

Po
in

te
r u

sa
ge

 re
fe

re
nc

e,
 p

ar
am

et
er

 p
as

si
ng

.

Re
co

m
m

en
da

tio
n:

 O
pt

io
na

l
Pr

er
eq

ui
si

te
: L

ab
 1

Re
co

m
m

en
da

tio
n:

 O
pt

io
na

l
N

ot
e:

 R
ec

om
m

en
de

d
fo

r a
dv

an
ce

d
st

ud
en

ts
.

Pr
er

eq
ui

si
te

: L
ab

 1
1

Re
co

m
m

en
da

tio
n:

 O
pt

io
na

l

Pr
er

eq
ui

si
te

: L
ab

s
4

an
d

5
Re

co
m

m
en

da
tio

n:
 S

ug
ge

st
ed

N
ot

e:
 E

xc
ep

tio
ns

 a
re

 u
se

d
th

ro
ug

ho
ut

 t
he

 b
oo

k.
Re

co
m

m
en

da
tio

n:
 O

pt
io

na
l

N
ot

e:
 U

se
fu

l f
or

 c
om

pl
et

in
g

la
b

as
si

gn
m

en
ts

 a
nd

 p
ro

je
ct

s.
Re

co
m

m
en

da
tio

n:
 S

ug
ge

st
ed

To the Student

Objectives
The courses that we enjoyed most when we were students were those that emphasized
design. In design-oriented courses, we used the concepts taught in lecture to solve
practical problems. The process of applying ideas made it easier to understand them
and understand how they could be applied in a real-world setting.

This emphasis on learning by doing is used throughout A Laboratory Course in C++
Data Structures. In each laboratory, you will explore a particular data structure by
implementing it. As you create an implementation, you will learn how the data
structure works and how it can be applied. The resulting implementation is a working
piece of software that you can use in later laboratories and programming projects.

Organization of the Laboratories
Each laboratory consists of four parts: Prelab, Bridge, In-lab, and Postlab. The Prelab is
a homework assignment in which you create an implementation of a data structure
using the techniques your instructor presents in lecture, along with material from your
textbook. In the Bridge exercise you test and debug the software you developed in the
Prelab. The In-lab phase consists of three exercises. In the first exercise, you apply the
data structure you created in the Prelab to the solution of a problem. The remaining In-
lab exercises apply or extend the concepts introduced in the Prelab. The last part of
each laboratory, the Postlab, is a homework assignment in which you analyze a data
structure in terms of its efficiency or use.

Your instructor will specify which exercises you need to complete for each
laboratory. Be sure to check whether your instructor wants you to complete the Bridge
exercise prior to your lab period or during lab. Use the cover sheet provided with the
laboratory to keep track of the exercises you have been assigned.

Student Resources
The authors have compiled a set of tools that will make it easier for you to create data
structure implementations. These tools are available for download at:
http://computerscience.jbpub.com/cppdatastructures/lab_manual.cfm. For each
laboratory, we provide a visualization function that displays a given data structure.
You can use this function to watch how your routines change the content and
organization of the data structure. Each laboratory also includes an interactive test
program that you can use to help you test and debug your work.

Additional files containing data, partial solution shells, and other supporting
routines are also available on the lab’s web site. You will need these files in order to
complete the laboratory exercises.

To the Instructor

Objective
When James Robergé was first given the opportunity to introduce laboratories into his
data structures course, he jumped at the chance. He saw laboratories as a way of
involving students as active, creative partners in the learning process. By making the
laboratories the focal point of the course, he sought to immerse his students in the

Preface | ix

course material. The goal of each lab is still to challenge students to exercise their
creativity (in both programming and analysis) while at the same time providing the
structure, feedback, and support that they need to meet the challenge. This manual is
the product of years of experimentation and refinement working toward this objective.

Organization of the Laboratories
In the initial development of these labs, it was attempted to shoehorn the creative
process into a series of two-hour laboratories. The result was a pressure cooker that
challenged everyone, but helped no one. In experimenting with solutions to this
problem, James Robergé developed a laboratory framework that retains the creative
element but shifts the time-intensive aspects outside the laboratory period. Within this
structure, each laboratory includes four parts: Prelab, Bridge, In-lab, and Postlab.

Prelab
The Prelab exercise is a homework assignment that links the lecture with the laboratory
period. In the Prelab, students explore and create on their own and at their own pace.
Their goal is to synthesize the information they learn in lectures with material from
their textbook to produce a working piece of software, usually an implementation of an
abstract data type (ADT). A Prelab assignment–including a review of the relevant
lecture and textbook materials–typically takes an evening to complete (that is, four to
five hours).

Bridge
The Bridge exercise asks students to test the software they developed in the Prelab. The
students create a test plan that they then use as a framework for evaluating their code.
An interactive, command-driven test program is provided for each laboratory, along
with a visualization routine that allows students to see changes in the content and
organization of a data structure. This assignment provides an opportunity for students
to receive feedback on their Prelab work and to resolve any difficulties they might have
encountered. It should take students approximately one hour to finish this exercise.

In-lab
The In-lab section takes place during the actual laboratory period (assuming you are
using a closed laboratory setting). Each In-lab consists of three exercises, and each
exercise has a distinct role. In Exercise 1, students apply the software they developed in
the Prelab to a real-world problem that has been honed to its essentials to fit
comfortably within the closed laboratory environment. The last two exercises stress
programming, and provide a capstone to the Prelab. Exercise 1 can be completed in
approximately one and a half hours. Exercises 2 and 3 take roughly one hour each to
complete.

Most students will not be able to complete all the In-lab exercises within a typical
closed laboratory period. We have provided a range of exercises so that you can select
those that best suit your laboratory environment and your students’ needs.

Postlab
The last phase of each laboratory is a homework assignment to be done following the
laboratory period. In the Postlab, students analyze the efficiency or utility of a given
data structure. Each Postlab exercise should take roughly thirty minutes to complete.

x | Preface

Using the Four-Part Organization in Your Laboratory
Environment
The term laboratory is used by computer science instructors to denote a broad range of
environments. One group of students in a data structures course, for example, may
attend a closed two-hour laboratory; at the same time, another group of students may
take the class in a televised format and “attend” an open laboratory. In developing this
manual, we have preserved the first edition’s efforts to create a laboratory format
suitable for a variety of open and closed laboratory settings. How you use the four-part
organization depends on your laboratory environment.

Two-Hour Closed Laboratory

Prelab
We expect the students attending a two-hour closed laboratory to make a good-faith
effort to complete the Prelab exercise before coming to the lab. Their work need not be
perfect, but their effort must be real (roughly 80% correct).

Bridge
We ask our students to complete the test plans included in the Bridge exercise and to
begin testing and debugging their Prelab work prior to coming to lab (as part of the
80% correct guideline).

In-lab
We use the first hour of the laboratory period to resolve any problems the students
might have experienced in completing the Prelab and Bridge exercises. Our intention is
to give constructive feedback so that students leave the lab with working Prelab
software—a significant accomplishment on their part.

During the second hour, we have students complete one of the In-lab exercises to
reinforce the concepts learned in the Prelab. You can choose the exercise by section or
by student, or you can let the students decide which one to complete.

Students leave the lab having received feedback on their Prelab and In-lab work.
You need not rigidly enforce the hourly divisions; a mix of activities keeps everyone
interested and motivated.

Postlab
After the lab, the students complete one of the Postlab exercises and turn it in during
their next lab period.

One-Hour Closed Laboratory

Prelab
If we have only one hour for the closed laboratory, we ask students to complete both
the Prelab and Bridge exercises before they come to the lab. This work is turned in at
the start of the period.

Preface | xi

In-lab
During the laboratory period, the students complete one of the In-lab exercises.

Postlab
Again, the students complete one of the Postlab exercises and submit it during their
next lab period.

Open Laboratory
In an open laboratory setting, we have the students complete the Prelab and Bridge
exercises, one of the In-lab exercises, and one of the Postlab exercises. You can stagger
the submission of these exercises throughout the week or have students turn in the
entire laboratory as a unit.

Adapting the Manual to Your Course

Student Preparation
This manual assumes that students have a background in either C or C++. The first
laboratory introduces classes and the use of classes to implement a simple ADT.
Succeeding laboratories introduce more complex C++ language features (dynamic
memory allocation, templates, inheritance, and so forth) in the context of data
structures that use these features.

Order of Topics
All instructors cover the course material in the order that they believe best suits their
students’ needs. To give instructors flexibility in the order of presentation, we have
made the individual laboratories as independent of one another as possible. We
recommend beginning with the following sequence of laboratories.

Laboratory 1 (Logbook ADT)
Introduces the implementation of an ADT using C++ classes

Laboratory 3 (Array Implementation of the List ADT)
Introduces dynamic memory allocation

Laboratory 5 (Stack ADT)
Introduces linked lists

We have placed the performance evaluation laboratory at the end of the manual
(Laboratory C), because in our experience, we have found that everyone covers this
topic at a different time. Rather than bury it in the middle of the manual, we have
placed it at the end so that you can include it where it best serves your and your
students’ needs, be that early in the semester, in the middle, or toward the end.

ADT Implementation
The laboratories are designed to complement a variety of approaches to implementing
each ADT. All ADT definitions stress the use of data abstraction and generic data
elements. As a result, you can adapt them with minimal effort to suit different
implementation strategies.

xii | Preface

For each ADT, class declarations that frame an implementation of the ADT are
given as part of the corresponding Prelab exercise. This declaration framework is also
used in the visualization function that accompanies the laboratory. Should you elect to
adopt a somewhat different implementation strategy, you need only make minor
changes to the data members in the class declarations and corresponding modifications
to the visualization routine. You do not need to change anything else in either the
supplied software or the laboratory text itself.

Differences Between the Manual and Your Text
We have found that variations in style between the approaches used in the textbook
and the laboratory manual discourage students from simply copying material from the
textbook. Having to make changes, however slight, encourages them to examine in
more detail how a given implementation works.

Combining the Laboratories with Programming Projects
One of our goals in designing these laboratories was to enable students to produce in
the laboratory code that they can use again as part of larger, more
applications-oriented programming projects. The ADTs the students develop in the
Prelab exercises provide a solid foundation for such projects. Reusing the material that
they created in laboratory frees students to focus on the application they are
developing. More important, they see in concrete terms - their time and effort - the
value of such essential software engineering concepts as code reuse, data abstraction,
and object-oriented programming.

The first exercise in each In-lab is an applications problem based on the material
covered in the Prelab for that laboratory. These exercises provide an excellent starting
point for programming projects. Free-form projects are also possible.

Student Resources
Challenging students is easy; helping them to meet a challenge is not. The student
resources found on http://computerscience.jbpub.com/cppdatastructures/
lab_manual.cfm include a set of software tools that assist students in developing ADT
implementations. The tools provide students with the means for testing an ADT
implementation using simple keyboard commands and for visualizing the resulting data
structure using ASCII text on a standard text display. Additional files containing data,
partial solution shells, and other supporting routines are also available for download.

Instructor’s Resources
An Instructor’s Solutions Kit is available for download at http://computerscience.
jbpub.com/cppdatastructures/lab_manual.cfm. Solutions to all of the Prelab and In-lab
exercises are included. Instructors should contact their Jones and Bartlett Publishers
Representative at 1-800-832-0034 for the password, in order to access the Instructor’s
Kit.

Preface | xiii

Acknowledgments
Writing this type of lab manual is an “iceberg” project—much of the work goes into the
implementation of a programming infrastructure that is only somewhat visible on the
printed page. We would like to thank Michael Stranz and Amy Rose for their patience
in guiding this particular iceberg through the publication process. We would like to
thank the following reviewers of the first edition’s manuscript: John W. Fendrich of
Bradley University, Timothy R. Hines of Johnson County Community College, Reggie
Kwan of Montana Tech, and Keith B. Olson of the University of Montana. Thanks also
to George Smith, Sunil Nair, Inhee Song, and Beomjin Kim for their comments on
earlier drafts of these laboratories.

I especially wish to thank Bob Carlson and Charlie Bauer for providing the
leadership that made a laboratory-based curriculum a priority in our department. Their
advice and encouragement means a great deal to me. Finally, I owe an unpayable debt
of thanks to my wife Ruby for her patience and support amid all the chaos.

J.R.

We would like to thank James Robergé for the vision and hard work that resulted
in the first edition, Jones and Bartlett Publishers for their faith and patience, Beth
Holloway for help with many of the details of this project, the Taylor University
Computing and System Sciences Department for their support, and our families and
friends for their encouragement and understanding.

S.B. & D.W.

xiv | Preface

Preface v

1 Logbook ADT 1
Focus: Implementing an ADT using a C++ class
Application: Generating a calendar display

2 Point List ADT 23
Focus: Array implementation of a point list
Application: Displaying a dragon curve

3 Array Implementation of the List ADT 45
Focus: Array implementation of a list
Application: Analyzing DNA sequences

4 Ordered List ADT 67
Focus: Array implementation of an ordered list using inheritance
Application: Assembling messages in a packet switching network

5 Stack ADT 93
Focus: Array and singly linked list implementations of a stack
Application: Evaluating postfix arithmetic expressions

6 Queue ADT 117
Focus: Array and singly linked list implementations of a queue
Application: Simulating the flow of customers through a line

7 Singly Linked List Implementation of the List ADT 137
Focus: Singly linked list implementation of a list
Application: Slide show program

8 Copying and Comparing ADTs 159
Focus: Deep data structure copying, assignment, and comparison
Application: Convert contructor

9 Doubly Linked List Implementation of the List ADT 181
Focus: Doubly linked list implementation of a list
Application: Anagram puzzle

10 Recursion with Linked Lists 203
Focus: Using recursion to process and restructure linked lists
Application: Replacing recursion with iteration

11 Binary Search Tree ADT 235
Focus: Linked implementation of a binary search tree
Application: Indexed accounts database

12 Expression Tree ADT 257
Focus: Linked implementation of an expression tree
Application: Logic circuits

13 Weighted Graph ADT 279
Focus: Adjacency matrix implementation of the Weighted Graph ADT
Application: Computation of shortest paths

14 Hash Table ADT 307
Focus: Hash table implementation with chaining
Application: Development of a perfect hash

A String ADT 331
Focus: Array implementation of a delimited character string
Application: Lexical analysis

xvi | Contents

B Heap ADT 351
Focus: Array implementation of a heap
Application: Simulating the flow of tasks in an operating system using a

priority queue

C Performance Evaluation 377
Focus: Determining execution times
Application: Analyzing the execution times of sorting and searching

routines

Appendix 1 Program Validation in C++ 395
Appendix 2 A Summary of C++ I/O 401
Appendix 3 Pointers 409

Contents | xvii

In this laboratory you will:

Examine the components that form an abstract data
type (ADT)

Implement an ADT using a C++ class

Create a function that displays a logbook in calendar
form

Investigate how to overload functions and operators

Logbook ADT

O
bjectives

Overview

The purpose of this laboratory is for you to explore how you can use C++ classes to
implement an abstract data type (ADT). We use a monthly logbook as our example
abstract data type. A monthly logbook consists of a set of entries, one for each day of
the month. Depending on the logbook, these entries might denote a business’s daily
receipts, the amount of time a person spent exercising, the number of cups of coffee
consumed, and so forth. A typical logbook is shown below.

C++ provides a set of predefined data types (int, char, float, and so on). Each of
these predefined types has a set of operations associated with it. You use these
operations to manipulate variables of a given type. For example, type int supports the
basic arithmetic and relational operators, as well as a number of numerical functions
(abs(), div(), etc.). These predefined data types provide a foundation on which you
construct more sophisticated data types, data types that are collections of related data
items rather than individual data items. In order to distinguish the data types you
create from C++’s predefined data types, we refer to them as abstract data types or
ADTs.

When specifying an ADT, you begin by describing what type of data items are in
the ADT. Then you describe how the ADT data items are organized to form the ADT’s
structure. In the case of the monthly logbook abstract data type—or Logbook ADT, for
short—the data items are the entries associated with the days of the month and the
structure is linear: the entries are arranged in the same order as the corresponding
days.

Having specified the data items and the structure of the ADT, you then define how
the ADT can be used by specifying the operations that are associated with the ADT.
For each operation, you specify what conditions must be true before the operation can
be applied (its preconditions or requirements) as well as what conditions will be true
after the operation has completed (its postconditions or results). The following
Logbook ADT specification includes operations that create a logbook for a given
month, store/retrieve the logbook entry for a specific day, and provide general
information about the month.

February 2003

1 100

2 95 3 90 4 0 5 150 6 94 7 100 8 105

9 100 10 100 11 50 12 110 13 110 14 100 15 125

16 110 17 0 18 110 19 0 20 125 21 100 22 110

23 115 24 111 25 0 26 50 27 110 28 125

2 | Laboratory 1

Logbook ADT

Data Items
A set of integer values.

Structure
Each integer value is the logbook entry for a given day of the month. The number of
logbook entries varies depending on the month for which data is being recorded. We
will refer to this month as the logbook month.

Operations
Logbook (int month, int year)

Requirements:
Month must specify a valid month.

Results:
Constructor. Creates an empty logbook for the specified month—that is, a logbook in
which all the entries are zero.

void putEntry (int day, int value)

Requirements:
Day is within the range of days in the logbook month.

Results:
Stores the value as the logbook entry for the specified day.

int getEntry (int day)

Requirements:
Day is within the range of days in the logbook month.

Results:
Returns the logbook entry for the specified day.

int getMonth () const

Requirements:
None

Results:
Returns the logbook month.

Logbook ADT | 3

int getYear () const

Requirements:
None

Results:
Returns the logbook year.

int getDaysInMonth () const

Requirements:
None

Results:
Returns the number of days in the logbook month.

4 | Laboratory 1

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 1: Cover Sheet

Logbook ADT | 5

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 1: Prelab Exercise

Logbook ADT | 7

Name __ Date _______________________

Section ___

The Logbook ADT specification provides enough information for you (or other programmers) to
design and develop programs that use logbooks. Before you can begin using logbooks in your C++
programs, however, you must first create a C++ implementation of the Logbook ADT.

You saw in the Overview that an ADT consists of a set of data items and a set of operations
that manipulate these data items. A C++ class consists of a set of data members and a set of
member functions that manipulate these data members. This close relationship between ADTs and
classes makes classes a natural means for implementing ADTs.

How do you create a declaration for a Logbook class from the specification of the Logbook
ADT? You begin with the ADT data items and structure. The Logbook ADT specification indicates
that you must maintain the following information about each logbook:

• The (month,year) pair that specifies the logbook month
• The logbook entries for the month

This information is stored in the data members of the Logbook class. The month and year are
stored as integer values and the entries are stored as an array of integers.

class Logbook
{
...

private:

// Data members
int logMonth, // Month covered by logbook

logYear, // Year for this logbook
entries[31]; // Logbook entries

};

By declaring the data members to be private, you prevent nonmember functions—that is, functions
that are not members of the Logbook class—from accessing the logbook data directly. This
restriction ensures that all references to the logbook data are made using the operations in the
Logbook ADT.

Having specified how the logbook data is to be stored, you then add declarations for the
member functions corresponding to the operations in the Logbook ADT. These functions are
declared as public. They can be called by any function, either member or nonmember, and provide
a public interface to the logbook data.

class Logbook
{
public:

// Constructor
Logbook (int month, int year); // Create a logbook

// Logbook marking operations
void putEntry (int day, int value); // Store entry for day
int getEntry (int day) const; // Return entry for day

// General operations
int getMonth () const; // Return the month
int getYear () const; // Return the year
int getDaysInMonth () const; // Number of days in month

private:

...
// Data members
int logMonth, // Month covered by logbook

logYear, // Year for this logbook
entries[31]; // Logbook entries

};

You need to know whether a given year is a leap year in order to determine the
number of days in a month. Adding a facilitator function (or helper function) that
determines this information completes the declaration of the Logbook class. Note that
the facilitator function is not an operation in the Logbook ADT. Thus, it is included as
a private member function rather than as part of the public interface. The completed
Logbook class declaration follows. This declaration is stored in the header file
logbook.h.

class Logbook
{
public:

// Constructor
Logbook (int month, int year); // Create a logbook

// Logbook marking operations
void putEntry (int day, int value); // Store entry for day
int getEntry (int day) const; // Return entry for day

// General operations
int getMonth () const; // Return the month
int getYear () const; // Return the year
int getDaysInMonth () const; // Number of days in month

private:

// Facilitator (helper) function
bool isLeapYear () const; // Leap year?

// Data members
int logMonth, // Month covered by logbook

logYear, // Year for this logbook
entries[31]; // Logbook entries

};

8 | Laboratory 1

The Logbook class declaration provides a framework for the Logbook class. You
fill in this framework by implementing each of the member functions. An
implementation of the getMonth() function is given below.

int Logbook:: getMonth () const
// Returns the logbook month.
{

return logMonth;
}

Note the use of the scope resolution operator (::) to indicate that getMonth() is a
member function in the Logbook class. You store your implementation of the member
functions in the file logbook.cpp.

The class declaration in the file logbook.h and the code in the file logbook.cpp form
a C++ implementation of the Logbook ADT. The following application program uses
the Logbook ADT to record and output a set of logbook entries. Note that this program
would ordinarily be stored in its own file (called coffee.cpp, for instance).

#include <iostream>
#include “logbook.h” // Include the declaration of the Logbook class

using namespace std;

// Records coffee intake for January 2003.

void main ()
{

Logbook coffee(1,2003); // Coffee intake for January 2003
int day; // Day loop counter

// Record entries for the 1st and 15th of January 2003

coffee.putEntry(1,5);
coffee.putEntry(15,2);

// Output the logbook entries.

cout << “Month/Year : “ << coffee.getMonth() << “/”
<< coffee.getYear() << endl;

for (day = 1 ; day <= coffee.getDaysInMonth() ; day++)
cout << day << “ : “ << coffee.getEntry(day) << endl;

}

The declaration

Logbook coffee(1,2003);

invokes the Logbook class constructor to create a logbook for January 2003. The
constructor begins by setting logMonth to 1 and logYear to 2003. You can use the
assignment operator to perform this task, as in the following code fragment.

Logbook ADT | 9

Logbook::Logbook (int month, int year)
// Constructs an empty logbook for the specified month.
{

logMonth = month;
logYear = year;
... // Set each entry in the logbook to 0.

}

Or, you can use a member initialization list to initialize logMonth and logYear. The
syntax for a member initialization list is shown below. Note that there is no semicolon
at the end of the initialization list.

Logbook::Logbook (int month, int year)
// Constructs an empty logbook for the specified month.
: logMonth(month),
logYear(year)

{
... // Set each entry in the logbook to 0.

}

These two methods of performing the initialization are roughly equivalent, so the
choice is generally a matter of preference. However, there are cases in C++ where
initialization can only be performed using the member initialization list.

Once the constructor has assigned values to logMonth and logYear, it sets each
data item in the entries array to 0 and returns.

Having constructed an empty logbook, the program then uses the putEntry()
function to record a pair of logbook entries. It then outputs the logbook using repeated
calls to the getEntry() function, with the getMonth() and getYear() functions
providing output headings.

A significant implementation issue is what to do when a logbook function such as
putEntry() or getEntry() is called with parameters that do not meet the stated
requirements. Using the getEntry() function as an example, it is a logic error to
request the entry for an invalid day. Although there are many possible ways of dealing
with this situation, the standard C++ method for dealing with bad parameters and
other difficult—or impossible—situations is to throw an exception.

You will start using C++ exceptions in lab 3, the List ADT. Until then, implement
all class member functions as though the requirements (preconditions) for each
function have been met. That is, you may assume that all function parameters are valid
and that the functions will not be asked to do anything illogical.

Step 1: Implement the member functions in the Logbook class. Base your
implementation on the Logbook class declaration given above (and in the file
logbook.h).

Step 2: Save your implementation of the Logbook ADT in the file logbook.cpp. Be
sure to document your code.

10 | Laboratory 1

Laboratory 1: Bridge Exercise

Logbook ADT | 11

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

Test your implementation of the Logbook ADT using the program in the file test1.cpp. This
program supports the following tests.

Test Action

1 Tests the constructor and the getMonth, getYear, and getDaysInMonth
operations.

2 Tests the putEntry and getEntry operations.

Step 1: Compile your implementation of the Logbook ADT in the file logbook.cpp.

Step 2: Compile the test program in the file test1.cpp.

Step 3: Link the object files produced by Steps 1 and 2.

Step 4: Complete the test plan for Test 1 by filling in the expected number of days for each
month.

Step 5: Execute the test plan. If you discover mistakes in your implementation of the Logbook
ADT, correct them and execute the test plan again.

Test Plan for Test 1 (constructor, month, year, and daysInMonth operations)
Test Case Logbook Month # Days in Month Checked

Simple month 1 2003 31

Month in the past 7 1969

Month in the future 12 2011

Current month

February (nonleap year) 2 2003

February (leap year) 2 2004

Step 6: Complete the test plan for Test 2 by filling in the input data and expected
result for each test case. Use a logbook for the current month.

Step 7: Execute the test plan. If you discover mistakes in your implementation of the
Logbook ADT, correct them and execute the test plan again.

Test Plan for Test 2 (putEntry and getEntry operations)
Test Case Logbook Entries Expected Result Checked

Record entries for the first and 1 100
fifteenth of the month 15 200

Record entries for the first and
last day of the month

Record entries for all the Fridays
in the month

Record an entry for the first day 1 100
twice 1 300

12 | Laboratory 1

Laboratory 1: In-lab Exercise 1

Logbook ADT | 13

Name __ Date _______________________

Section ___

The entries in a logbook store information about a specific month. A calendar provides a natural
format for displaying this monthly data.

void displayCalendar () const

Requirements:
Logbook month must occur in a year in the range 1901–2099.

Results:
Outputs a logbook using the calendar format shown below. Note that each calendar entry includes
the logbook entry for the corresponding day.

2 / 2003
Sun Mon Tue Wed Thu Fri Sat

1 100
2 95 3 90 4 0 5 150 6 94 7 100 8 105
9 100 10 100 11 50 12 110 13 110 14 100 15 125
16 110 17 0 18 110 19 0 20 125 21 100 22 110
23 115 24 111 25 0 26 50 27 110 28 125

In order to produce a calendar for a given month, you need to know on which day of the week
the first day of the month occurs. The day of the week corresponding to a date month/day/year can
be computed using the following formula:

dayOfWeek = (1 + nYears + nLeapYears + nDaysToMonth + day) % 7

where nYears is the number of years since 1901, nLeapYears is the number of leap years since
1901, and nDaysToMonth is the number of days from the start of the year to the start of month.

This formula yields a value between 0 (Sunday) and 6 (Saturday) and is accurate for any date
from January 1, 1901 to December 31, 2099. You can compute the value nDaysToMonth
dynamically using a loop. Alternatively, you can use an array to store the number of days before
each month in a nonleap year and add a correction for leap years when needed.

Step 1: Implement the facilitator function getDayOfWeek() described below and add it to the
file logbook.cpp. A prototype for this function is included in the declaration of the
Logbook class in the file logbook.h.

int getDayOfWeek (int day) const

Requirements:

Day is a valid day in the logbook month (must occur during a year in the range
1901–2099).

Results:

Returns an integer denoting the day of the week on which the specified day
occurs, where 0 corresponds to Sunday, 1 to Monday, and so forth.

Step 2: Implement the displayCalendar operation described above and add it to
the file logbook.cpp. A prototype for this operation is included in the
declaration of the Logbook class in the file logbook.h.

Step 3: Activate Test 3 in the test program test1.cpp by removing the comment
delimiter (and the character ‘3’) from the lines that begin with “//3”.

Step 4: Complete the test plan for Test 3 by filling in the day of the week for the first
day of the current month.

Step 5: Execute the test plan. If you discover mistakes in your implementation of the
displayCalendar operation, correct them and execute the test plan again.

Test Plan for Test 3 (displayCalendar operation)
Logbook Day of the Week of the

Test Case Month First Day in the Month Checked

Simple month 1 1995 0 (Sunday)

Month in the past 7 1969 2 (Tuesday)

Month in the future 12 2011 4 (Thursday)

Current month

February (nonleap year) 2 2003 6 (Saturday)

February (leap year) 2 2004 0 (Sunday)

14 | Laboratory 1

Laboratory 1: In-lab Exercise 2

Logbook ADT | 15

Name __ Date _______________________

Section ___

C++ allows you to create multiple functions with the same name as long as these functions have
different numbers of arguments or different types of arguments—a process referred to as function
overloading. The following Logbook ADT operations, for example, each share the same name as an
existing operation. They have fewer arguments than the existing operations, however. Instead of
using an argument to specify the month (or day) to process, they use the current month (or day).

Logbook ()

Requirements:
None

Results:
Default constructor. Creates an empty logbook for the current month.

void putEntry (int value)

Requirements:
Logbook is for the current month.

Results:
Stores the value as the logbook entry for today.

Step 1: Implement these operations and add them to the file logbook.cpp. Prototypes for these
operations are included in the declaration of the Logbook class in the file logbook.h. The
standard C++ library functions time() and localtime() can be used to access the
necessary time and date information. You may need help from your instructor to get this
working.

Step 2: Activate Test 4 in the test program test1.cpp by removing the comment delimiter (and the
character ‘4’) from the lines that begin with “//4”.

Step 3: Complete the test plan for Test 4 by filling in the expected result for each operation.

Step 4: Execute the test plan. If you discover mistakes in your implementation of these
operations, correct them and execute the test plan again.

Test Plan for Test 4 (overloaded functions)
Test Case Expected Result Checked

Construct a logbook for the Number of days in the
current month current month:

Record an entry for today Day on which entry is made:

16 | Laboratory 1

Laboratory 1: In-lab Exercise 3

Logbook ADT | 17

Name __ Date _______________________

Section ___

C++ allows you to create operators that share the name of one of C++’s predefined operators, a
process referred to as operator overloading. The following operation, for instance, uses the syntax
of the familiar subscript operator to retrieve logbook entries. It is functionally equivalent to the
getEntry operation.

int operator [] (int day) const

Requirements:
Day is within the valid range of days in the logbook month.

Results:
Returns the logbook entry for the specified day.

The following operation provides another example of operator overloading. In this case, the
additive assignment operator (+=) is used to combine logbooks.

void operator += (const Logbook &rightLogbook)

Requirements:
The logbooks cover the same month.

Results:
Adds each entry in rightLogBook to the corresponding entry in this logbook.

The following code fragment uses these operations to sum a pair of logbooks and output the
combined logbook entries.

Logbook citySales(9,2003), // City sales
suburbSales(9,2003), // Suburban sales
salesTotals(9,2003); // Combined sales for September 2003

int j; // Loop counter

// Read in the city and suburban sales.
...

// Sum the city and suburban sales.

salesTotals += citySales; // Include city sales
salesTotals += suburbSales; // Include suburban sales

// Output the sum.

for (j = 1 ; j <= salesTotals.getDaysInMonth() ; j++)
cout << j << “ : “ << salesTotals[j] << endl;

Step 1: Implement these operations and add them to the file logbook.cpp. Prototypes
for these operations are included in the declaration of the Logbook class in
the file logbook.h.

Step 2: Activate Test 5 in the test program test1.cpp by removing the comment
delimiter (and the character ‘5’) from the lines that begin with “//5”.

Step 3: Complete the test plan for Test 5 by filling in the input data and expected
result for each test case. Use a logbook for the current month.

Step 4: Execute the test plan. If you discover mistakes in your implementation of the
subscript operation, correct them and execute the test plan again.

Test Plan for Test 5 ([] operation)
Test Case Logbook Entries Expected Result Checked

Record entries for the first 2 100
and fifteenth of the month 15 200

Record entries for the first
and last day of the month

Step 5: Activate Test 6 in the test program test1.cpp by removing the comment
delimiter (and the character ‘6’) from the lines that begin with “//6”.

Step 6: Complete the test plan for Test 6 by filling in the expected result. Use a
logbook for the current month.

Step 7: Execute the test plan. If you discover mistakes in your implementation of the
logbook addition operation, correct them and execute the test plan again.

Test Plan for Test 6 (+= operation)
Expected Result of Adding

Test Case logDay200 to logDay100 Checked

The entries in logbook
logDay100 are equal to
(100 * day) and
the entries in logbook
logDay200 are equal to
(200 * day)

18 | Laboratory 1

Laboratory 1: Postlab Exercise 1

Logbook ADT | 19

Name __ Date _______________________

Section ___

Part A
The following function prototypes are part of the declaration of the Logbook class.

int getMonth () const; // Return the month
int getYear () const; // Return the year
int getDaysInMonth () const; // Number of days in month

What is the significance of the keyword const in these prototypes?

Part B
Why are some member functions const and others not?

20 | Laboratory 1

Laboratory 1: Postlab Exercise 2

Logbook ADT | 21

Name __ Date _______________________

Section ___

Part A
What is the significance of the keyword const and the symbol ‘&’ in the following function
prototype from In-lab Exercise 3?

void operator += (const Logbook &rightLogbook)

Part B
What is gained by passing rightLogbook in this way?

22 | Laboratory 1

In this laboratory you will:

Implement a list of points using an array
representation of a list, including development of an
iteration scheme that allows you to move through a
list data item by data item

Become familiar with the concept of using a cursor to
focus on a particular item in a data structure

Create a program—using OpenGL—that displays a
curve represented as a point list

Develop a function to determine whether one point
list represents a translation of another point list

Point List ADT

O
bjectives

Overview

The list is perhaps the most commonly used data structure. Just think how often you
make lists of things to do, places to be, and so on. The defining property of a list is
that the data items are organized linearly—that is, every data item has one data item
immediately before it and another immediately after it (except, of course, the data
items at the beginning and end of the list).

In this laboratory, you explore lists in which each data item is a two-dimensional
point, or (x, y) pair. We refer to this type of list as a point list. Point lists are routinely
used in computer graphics, computer-aided design (CAD), and computer modeling to
represent lines, curves, edges, and so forth.

The following Point List ADT provides operations that allow you to add points to a
list, check the state of a list (is it empty or is it full?), and iterate through the points in
a list. List iteration is the process of moving through a list, processing each data item
in turn. Iteration is done using a cursor that you move through the list much as you
move the cursor in a text editor or word processor. In the following example, the Point
List ADT’s gotoBeginning operation is used to move the cursor to the beginning of the
list. The cursor is then moved through the list point-by-point by repeated applications
of the gotoNext operation. Note that the point marked by the cursor is shown in bold.

After gotoBeginning: (0,0) (1,1) (2,2) (3,3)

After gotoNext: (0,0) (1,1) (2,2) (3,3)

After gotoNext: (0,0) (1,1) (2,2) (3,3)

After gotoNext: (0,0) (1,1) (2,2) (3,3)

24 | Laboratory 2

Point List ADT

Data Items
Each data item in a point list is of type Point and contains a pair of floating-point
numbers that represent the point’s x and y coordinates.

Structure
The points form a linear structure in which points follow one after the other, from the
beginning of the list to its end. The ordering of the points is determined by the order in
which they were appended to the list. At any point in time, one point in any nonempty
list is marked using the list’s cursor. You travel through the list using operations that
change the position of the cursor.

Operations
PointList ()

Requirements:
None

Results:
Constructor. Creates an empty list.

void append (Point newPoint)

Requirements:
List is not full.

Results:
Adds newPoint to the end of a list. If the list is empty, then adds newPoint as the first
(and only) point in the list. In either case, moves the cursor to newPoint.

void clear ()

Requirements:
None

Results:
Removes all the points in a list.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a list is empty. Otherwise, returns false.

Point List ADT | 25

bool isFull () const

Requirements:
None

Results:
Returns true if a list is full. Otherwise, returns false.

void gotoBeginning ()

Requirements:
List is not empty.

Results:
Moves the cursor to the point at the beginning of the list.

void gotoEnd ()

Requirements:
List is not empty.

Results:
Moves the cursor to the point at the end of the list.

bool gotoNext ()

Requirements:
List is not empty.

Results:
If the cursor is not at the end of a list, then moves the cursor to the next point in the
list and returns true. Otherwise, returns false.

bool gotoPrior ()

Requirements:
List is not empty.

Results:
If the cursor is not at the beginning of a list, then moves the cursor to the preceding
point in the list and returns true. Otherwise, returns false.

Point getCursor () const

Requirements:
List is not empty.

Results:
Returns a copy of the point marked by the cursor.

26 | Laboratory 2

void showStructure () const

Requirements:
None

Results:
Outputs the points in a list. If the list is empty, outputs “Empty list”. Note that this
operation is intended for testing/debugging purposes only.

Point List ADT | 27

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 2: Cover Sheet

Point List ADT | 29

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 2: Prelab Exercise

Point List ADT | 31

Name __ Date _______________________

Section ___

You can implement a list in many ways. Given that a list is linear and that all the list data items
are of the same type (Point), an array seems a natural choice. It would be more flexible if you
could declare the size of the array at run-time (this will happen in Lab 3, the list ADT), but for now
the array size will be fixed.

Step 1: Implement the operations in the Point List ADT using an array to store the list of points.
The number of data items in a list changes, therefore you need to store the actual number
of points in the list (size), along with the points themselves (points). You also need to
keep track of the array index (cursor). Base your implementation on the following
declarations from the file ptlist.h. An implementation of the showStructure operation is
given in the file show2.cpp.

const int maxListSize = 10; // Default maximum list size

class Point
{
public:

Point (float x0 = 0, float y0 = 0) // Constructor
{ x = x0; y = y0; }

float x, y; // Point coordinates (can be accessed directly)
};

class PointList
{
public:

// Constructor
PointList ();

// List manipulation operations
void append (Point newPoint); // Append point to list
void clear (); // Clear list

// List status operations
bool isEmpty () const; // List is empty
bool isFull () const; // List is full

// List iteration operations
void gotoBeginning (); // Go to beginning
void gotoEnd (); // Go to end
bool gotoNext (); // Go to next point
bool gotoPrior (); // Go to prior point
Point getCursor () const; // Return point

// Output the list structure — used in testing/debugging
void showStructure () const;

private:

// Data members
int size, // Actual number of points in the list

cursor; // Cursor index
Point points[maxListSize]; // Array containing the points

};

Step 2: Save your implementation of the Point List ADT in the file ptlist.cpp. Be sure
to document your code.

The declarations in the file ptlist.h and the code in the file ptlist.cpp combine to
form a C++ implementation of the Point List ADT. The following code fragment uses
the operations in this ADT to construct a list of points and to iterate through the list
from beginning to end, outputting each point along the way.

#include <iostream>
#include “ptlist.h”

using namespace std;

void main ()
{

PointList polygon; // Set of vertices for a polygon
Point vertex; // Vertex

// Read in the polygon’s vertices.

cout << “Enter the polygon’s vertices (end with eof) : “;
while (cin >> vertex.x >> vertex.y && !polygon.isFull())

polygon.append(vertex);

// Output the vertices one per line.

if (!polygon.isEmpty())
{

polygon.gotoBeginning(); // Go to beginning of list
do
{

vertex = polygon.getCursor();
cout << “(“ << vertex.x << “,”

<< vertex.y << “)” << endl;
}
while (polygon.gotoNext()); // Go to next point (if any)

}
}

32 | Laboratory 2

Laboratory 2: Bridge Exercise

Point List ADT | 33

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program you used in Laboratory 1 consisted of a series of tests that were hardcoded
into the program. Adding a new test case to this style of test program requires changing the test
program itself. In this laboratory, you use a more flexible kind of test program to evaluate your
ADT implementation—one in which you specify a test case using commands, rather than code. This
interactive, command-driven test program allows you to check a new test case by simply entering
a series of keyboard commands and observing the results.

The test program in the file test2.cpp supports the following commands.

Command Action

+ x y Append point (x,y) to the end of the list.
@ Display the point marked by the cursor.
N Go to the next point.
P Go to the prior point.
< Go to the beginning of the list.
> Go to the end of the list.
E Report whether the list is empty.
F Report whether the list is full.
C Clear the list.
Q Quit the test program.

Suppose you wish to confirm that your array implementation of the Point List ADT
successfully constructs a point list storing the vertices of a square. You can test this case by
entering the following sequence of keyboard commands.

Command + 1 1 + 1 2 + 2 2 + 2 1 Q

Action Append (1,1) Append (1,2) Append (2,2) Append (2,1) Quit

It is easy to see how this interactive test program allows you to rapidly examine a variety of
test cases. This speed comes with a price, however. You must be careful not to violate the
preconditions required by the operations you are testing. For instance, the commands

Command C @

Action Clear list Error

cause the test program to fail during the call to the getCursor operation. The source of the failure
does not lie in the implementation of the Point List ADT, nor is the test program flawed. The

failure occurs because this sequence of operations creates a state that violates the
preconditions of the getCursor operation (the list must not be empty when the
getCursor operation is invoked). The speed with which you can create and evaluate test
cases using an interactive, command-driven test program makes it very easy to
produce this kind of error. It is very tempting to just sit down and start entering
commands. A much better strategy, however, is to create a test plan listing the test
cases you wish to check and then to write out command sequences that generate these
test cases.

Step 1: Compile your implementation of the Point List ADT in the file ptlist.cpp, the
test program in the file test2.cpp, and link them together into one executable.

Step 2: Complete the following test plan by adding test cases that check whether your
implementation of the Point List ADT correctly handles the following tasks:

• Appending points to a list that has been cleared

• Filling a list to its maximum size

• Determining whether a list is empty

• Determining whether a list is full

Assume that the output of one test case is used as the input to the following test case
and note that although expected results are listed for the final command in each
command sequence, you should confirm that each command produces a correct result.

Step 3: Execute your test plan. If you discover mistakes in your implementation of
the Point List ADT, correct them and execute your test plan again.

Test Plan for the Operations in the Point List ADT
Test Case Commands Expected Result Checked

Append a series of + 1 2 (1,2) (3,4) (5,6) (7,8)
points + 3 4

+ 5 6
+ 7 8

Iterate from the < N N (1,2) (3,4) (5,6) (7,8)
beginning

Iterate from the end > P P (1,2) (3,4) (5,6) (7,8)

Display the point @ (3,4)
marked by the cursor

Clear the list C Empty list

Note: The point marked by the cursor is shown in bold.

34 | Laboratory 2

Laboratory 2: In-lab Exercise 1

Point List ADT | 35

Name __ Date _______________________

Section ___

As we noted in the Overview, point lists are commonly used in computer graphics to represent
curves. Rather than storing all the points required to display a curve at a given level of detail—an
approach that would require massive amounts of storage—only selected points are stored in the list.
These points are then connected by line segments when the curve is displayed (through the
“connect the dots” game). The figure below shows a circle centered at (2,2) with radius 1, its point
list representation, and the resulting display.

Note that we have sacrificed some of the smoothness of the circle by approximating it using only
nine points (with one point repeated so that the curve is closed). We could produce a much
smoother circle by dividing the circle into smaller pieces.

Step 1: Using the shell in the file drawcurv.cs as a basis, create a program that displays the points
in a point list. Your program need only display the points themselves, not the lines
connecting them.

Step 2: Test your program using a square. Call the makeSquare() function (in the file
drawcurv.cs) to generate the point list for a square.

Step 3: Test your program using a dragon curve. Call the makeDragon() function (in the file
drawcurv.cs) to generate the point list for a dragon curve. The point lists for dragon
curves grow quite large as the recursion depth is increased. Note: This will require you to
change the maxListSize in ptlist.h to make the array big enough to hold enough points.

Step 4: Modify your program so that it displays the line segment connecting each pair of points
in a point list.

Step 5: Test your modified program using a square and a dragon curve.

(1, 2)
(1.29, 2.71)
(2, 3)
(2.71, 2.71)
(3, 2)
(2.71, 1.29)
(2, 1)
(1.29, 1.29)
(1, 2)

Test Plan for the Curve Drawing Program
Test Case Expected Curve Checked

Square

Dragon curve
(recursion depth 2)

Dragon curve
(recursion depth 7)

36 | Laboratory 2

Laboratory 2: In-lab Exercise 2

Point List ADT | 37

Name __ Date _______________________

Section ___

bool isTranslation (const PointList &otherList)

Requirements:
None

Results:
Compares the contents of the current PointList object to otherList in order to determine whether
otherList represents a translation of the current PointList object. Returns true if it represents a
translation. Otherwise, returns false. If the lists are not the same size or are empty, then they do
not represent a translation.

In the field of computer graphics, it is common to take a set of points and make one or more
changes to all the points to produce a new set of points. Scaling enables the zoom effect. Rotation
is used to achieve—surprise—rotation of images. Translation moves a set of points without
performing a rotation. To translate a single two-dimensional point (x, y), the x value can be
changed by a specific amount—called delta-x (�x)—and the y value can be changed by another
amount, delta-y (�y). To translate a set of points, the same �x and �y is applied to each of the
points.

The point set {(0,0), (1,1), (2,2), (3,3)} is translated into the set {(3,1), (4,2), (5,3), (6,4)} by
adding 3 to each x-value (�x = 3) and 1 to each y-value (�y = 1).

x-axis
1 2 3 4 5 6

6

5

4

3

2

1

y-axis

Step 1: Implement the isTranslation operation and add it to the file ptlist.cpp. A
prototype for this operation is included in the declaration of the PointList
class in the file ptlist.h.

Step 2: Add your implementation of the isTranslation operation to the file
ptlist.cpp.

Step 3: Activate the ‘T’ (test translation) and ‘*’ (insert into translation test list)
commands in the test program test2.cpp by removing the comment delimiter
(and the character ‘2’) from the lines that begin with “//2”.

Step 4: Complete the following test plan by adding test cases that check whether your
implementation of the isTranslation operator correctly determines whether
one PointList represents a translation of the other.

Step 5: Execute your test plan. If you discover mistakes in your implementation of
the isTranslation operation, correct them and execute your test plan
again.

Test Plan for the isTranslation Operation
PointList 1 PointList 2 (�x,�y) Expected Result Checked

(0,0) (1,1) (2,2) (1,0) (2,1) (3,2) (1,0) True

38 | Laboratory 2

Laboratory 2: In-lab Exercise 3

Point List ADT | 39

Name __ Date _______________________

Section ___

Inserting points at the beginning of a point list is a little bit trickier—and more time consuming—
than adding them at the end.

void insertAtBeginning (Point newPoint)

Requirements:
List is not full.

Results:
Inserts newPoint at the beginning of a list. If the list is empty, then inserts newPoint as the first
(and only) point in the list. In either case, moves the cursor to newPoint.

Step 1: Implement this operation and add it to the file ptlist.cpp. A prototype for this operation is
included in the declaration of the PointList class in the file ptlist.h.

Step 2: Activate the ‘#’ (insert at beginning) command in the test program test2.cpp by removing
the comment delimiter (and the character ‘3’) from the lines beginning with “//3”.

Step 3: Complete the following test plan by adding test cases that check whether your
implementation of the insertAtBeginning operation correctly inserts points into an
empty list.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the
insertAtBeginning operation, correct them and execute your test plan again.

Test Plan for the insertAtBeginning Operation
Test Case Commands Expected Result Checked

Insert a series of # 1 2 (7,8) (5,6) (3,4) (1,2)
points at the # 3 4
beginning of the list # 5 6

7 8

Note: The point marked by the cursor is shown in bold.

Laboratory 2: Postlab Exercise 1

Point List ADT | 41

Name __ Date _______________________

Section ___

Part A
Does hard-coding the maximum size of the point array points in the ptlist.h file cause any
problems? Explain why or why not.

Part B
If it does cause problems, what would you do to overcome the problems?

42 | Laboratory 2

Laboratory 2: Postlab Exercise 2

Point List ADT | 43

Name __ Date _______________________

Section ___

Part A
Would the Point List ADT be harder to interact with if there were no cursor?

Part B
If you had no cursor, what changes would need to be made to the class?

44 | Laboratory 2

In this laboratory you will:

Implement the List ADT using an array representation
of a list, including development of an iteration
scheme that allows you to move through a list data
item by data item

Create a program that analyzes the genetic content of
a DNA sequence

Analyze the efficiency of your array implementation
of the List ADT

Array Implementation
of the List ADT

O
bjectives

Overview

The list is one of the most frequently used data structures. Although all programs share
the same definition of list—a sequence of homogeneous data items—the type of data
item stored in lists varies from program to program. Some use lists of integers, others
use lists of characters, floating-point numbers, points, and so forth. You normally have
to decide on the data item type when you implement the ADT. If you need a different
data item type, there are several possibilities.

1. You could edit the class code (the declaration file, classname.h, and the definition
file, classname.cpp—in this case of the List ADT, listarr.h and listarr.cpp) and
replace every reference to the old data type by the new data type. This is a lot of
work, tedious, and error-prone.

2. A simpler solution is to use a made up data type name throughout the class, such
as DataType, and then use the C++ typedef statement at the beginning of the
class declaration file to specify what DataType really is. To specify that the list
data items should be characters, you would type

typedef char DataType;

This approach does work, and changing the data item type is much easier than the
first solution. We will be using this approach for the List ADT and the Ordered List
ADT.

This approach does, however, have drawbacks. A major problem with this
method is that a given program can have DataType set to only one particular
type. For instance, you cannot have both a list of characters and a list of integers;
DataType must be either char or int. You could make separate copies of the List
ADT and define DataType differently in each copy. Because you cannot have
multiple classes in a program with the same name, you would also need to change
every occurrence of the class name List to something like CharList or IntList.
This works, but it gets messy and the whole process must be repeated every time
you need a list with a new data item data type.

3. Fortunately, C++ has a third solution, templates, which we will explain in the
Stack ADT in Laboratory 5. When using templates, you do not need to create a
different list implementation for each type of list data item. Instead, you create a
list implementation in terms of list data items of some generic type rather like
solution 2 above. We will use the arbitrary string “DT” for the data type. This
requires just one copy of the class code. You can then ask the compiler to make
any number of lists in which the data items are an arbitrary data type by adding a
simple piece of information when you declare a list in your code.

List<int> samples; // Create a list of integers
List<char> line; // Then create a list of characters

We will return to templates in the Stack ADT.

If an ADT is to be useful, its operations must be both expressive and intuitive. The
following List ADT provides operations that allow you to insert data items in a list,
remove data items from a list, check the state of a list (is it empty, or is it full?), and
iterate through the data items in a list. Iteration is done using a cursor that you move
through the list much as you move the cursor in a text editor or word processor. In the
following example, the List ADT’s gotoBeginning operation is used to move the cursor
to the beginning of the list. The cursor is then moved through the list data item by

46 | Laboratory 3

data item by repeated applications of the gotoNext operation. Note that the data item
marked by the cursor is shown in bold.

After gotoBeginning: a b c d

After gotoNext: a b c d

After gotoNext: a b c d

After gotoNext: a b c d

Array Implementation of the List ADT | 47

List ADT

Data Items
The data items in a list are of generic type DataType.

Structure
The data items form a linear structure in which list data items follow one after the
other, from the beginning of the list to its end. The ordering of the data items is
determined by when and where each data item is inserted into the list and is not a
function of the data contained in the list data items. At any point in time, one data
item in any nonempty list is marked using the list’s cursor. You travel through the list
using operations that change the position of the cursor.

Operations
List (int maxNumber = defMaxListSize) throw (bad_alloc)

Requirements:
None

Results:
Constructor. Creates an empty list. Allocates enough memory for a list containing
maxNumber data items.

~List ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a list.

void insert (const DataType &newDataItem) throw (logic_error)

Requirements:
List is not full.

Results:
Inserts newDataItem into a list. If the list is not empty, then inserts newDataItem
after the cursor. Otherwise, inserts newDataItem as the first (and only) data item in
the list. In either case, moves the cursor to newDataItem.

void remove () throw (logic_error)

Requirements:
List is not empty.

Results:
Removes the data item marked by the cursor from a list. If the resulting list is not
empty, the cursor should now be marking the data item that followed the deleted data

48 | Laboratory 3

item. If the deleted data item was at the end of the list, then moves the cursor to the
data item at the beginning of the list.

void replace (const DataType &newDataItem) throw (logic_error)

Requirements:
List is not empty.

Results:
Replaces the data item marked by the cursor with newDataItem. The cursor remains at
newDataItem.

void clear ()

Requirements:
None

Results:
Removes all the data items in a list.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a list is empty. Otherwise, returns false.

bool isFull () const

Requirements:
None

Results:
Returns true if a list is full. Otherwise, returns false.

void gotoBeginning () throw (logic_error)

Requirements:
List is not empty.

Results:
If a list is not empty, then moves the cursor to the data item at the beginning of the
list.

void gotoEnd () throw (logic_error)

Requirements:
List is not empty.

Results:
If a list is not empty, then moves the cursor to the data item at the end of the list.

Array Implementation of the List ADT | 49

bool gotoNext () throw (logic_error)

Requirements:
List is not empty.

Results:
If the cursor is not at the end of a list, then moves the cursor to the next data item in
the list and returns true. Otherwise, returns false.

bool gotoPrior () (logic_error)

Requirements:
List is not empty.

Results:
If the cursor is not at the beginning of a list, then moves the cursor to the preceding
data item in the list and returns true. Otherwise, returns false.

DataType getCursor () const throw (logic_error)

Requirements:
List is not empty.

Results:
Returns a copy of the data item marked by the cursor.

void showStructure () const

Requirements:
None

Results:
Outputs the data items in a list. If the list is empty, outputs “Empty list”. Note that this
operation is intended for testing/debugging purposes only. It only supports list data
items that are one of C++’s predefined data types (int, char, and so forth).

50 | Laboratory 3

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 3: Cover Sheet

Array Implementation of the List ADT | 51

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 3: Prelab Exercise

Array Implementation of the List ADT | 53

Name __ Date _______________________

Section ___

You can implement a list in many ways. Given that all the data items in a list are of the same type,
and that the list structure is linear, an array seems a natural choice. You could declare the size of
the array at compile-time (as you did with the logbook array in Laboratory 1), but your List ADT
will be more flexible if you specify the size of the array at run-time and dynamically allocate the
memory required to store it.

Memory allocation for the array is done by the constructor. The constructor is invoked
whenever a list declaration is encountered during the execution of a program. Once called, the
constructor allocates an array using C++’s new operator. The constructor outlined below, for
example, allocates an array of maxNumber data items and assigns the address of the array to the
pointer dataItems, where dataItems is of type DataType*.

List:: List (int maxNumber)
{

. . .
dataItems = new DataType[maxNumber];

}

Whenever you allocate memory, you must ensure that it is deallocated when it is no longer
needed. The destructor is used to deallocate the memory storing the array. This function is invoked
whenever a list is destroyed—that is, if the function containing the corresponding list declaration
terminates or if the list is explicitly destroyed by the programmer. The fact that the call to the
destructor is made automatically eliminates the possibility of you forgetting to deallocate the list.
The destructor outlined below frees the memory used by the array that you allocated above.

List:: ~List ()
{

delete [] dataItems;
}

Another significant implementation issue is what to do when a logbook function such as
insert() or remove() is called with parameters or preconditions that do not meet the stated
requirements. Using the remove() function as an example, it is a logic error to request removal of
an item from an empty list. Although there are many possible ways of dealing with this situation,
the standard C++ method for dealing with bad parameters and other difficult—or impossible—
situations is to throw an exception. Throwing an exception causes the currently active function to
stop execution and return to the calling function. Unless that function or one of its callers takes
special steps to handle the exception, the program will be halted. By using the C++ try and catch
instructions, callers can decide what to do when an exception is thrown. The try instruction is
used when trying something that might cause an exception. The catch instruction is used to
specify what to do if an exception did occur inside the preceding try code block. Common catch
responses to an exception include one or more of the following: 1) print out a helpful explanation
of what went wrong, 2) try to work around the problem, and 3) halt the program. The empty list

problem in the remove() function example can be dealt with by using the following
code snippet at the beginning of the function to enforce the “List is not empty”
requirement.

if (size == 0)
throw logic_error(“Remove: list is empty”);

The C++ exception handling mechanism is quite complicated. For the purposes of this
book, you will almost always be throwing a logic_error exception or one of just a
few other exception types. We have written a longer discussion of exceptions and
program validation techniques in Appendix 1. Please read it before completing
Laboratory 3.

Also, note that for the purpose of demonstrating the usefulness of exceptions, we
have included catch statements in the test3.cpp program to handle any exceptions that
are thrown. This is the only test program that uses them heavily because they tend to
clutter the code and make it less readable. We decided not to sacrifice the readability
of the rest of our small test programs by adding complete error-handling capabilities.
However, these capabilities are mandatory in large complex programs.

Step 1: Implement the operations in the List ADT using an array to store the list data
items. Lists change in size; therefore, you need to store the maximum number
of data items the list can hold (maxSize) and the actual number of data items
in the list (size), along with the list data items themselves (dataItems). You
also need to keep track of the array index (cursor). Base your
implementation on the following declarations from the file listarr.h. An
implementation of the showStructure operation is given in the file show3.cpp.

const int defMaxListSize = 10; // Default maximum list size

typedef char DataType;

class List
{
public:

// Constructor
List (int maxNumber = defMaxListSize) throw (bad_alloc);

// Destructor
~List ();

// List manipulation operations
void insert (const DataType &newDataItem) // Insert after cursor

throw (logic_error);
void remove () throw (logic_error); // Remove data item
void replace (const DataType &newDataItem) // Replace data item

throw (logic_error);
void clear (); // Clear list

// List status operations
bool isEmpty () const; // List is empty
bool isFull () const; // List is full

// List iteration operations
void gotoBeginning () throw (logic_error); // Go to beginning
void gotoEnd () throw (logic_error); // Go to end

54 | Laboratory 3

bool gotoNext () throw (logic_error); // Go to next data item
bool gotoPrior () throw (logic_error); // Go to prior data item
DataType getCursor () const throw (logic_error); // Return data item

// Output the list structure — used in testing/debugging
void showStructure () const;

private:

// Data members
int maxSize,

size, // Actual number of data item in the list
cursor; // Cursor array index

DataType *dataItems; // Array containing the list data item
};

Step 2: Save your implementation of the List ADT in the file listarr.cpp. Be sure to
document your code.

The code in the file listarr.cpp provides a template (or framework) for a set of
implementations of the List ADT. The type of the list data items is deliberately left
unspecified in this framework and is only made specific where the data type is declared
in the class declaration in listarr.h.

The following program uses the array implementation of the operations in the List
ADT to read in a list of integer samples and compute their sum.

// For this example, set DataType to “int” in listarr.h,

#include <iostream>
#include “listarr.h” // Include the class declaration file

using namespace std;

void main ()
{

List samples(100); // Set of samples
int newSample, // Input sample

total = 0; // Sum of the input samples

// Read in a set of samples from the keyboard.

cout << “Enter list of samples (end with eof) : “;
while (cin >> newSample)

samples.insert(newSample);

// Sum the samples and output the result.

if (!samples.isEmpty()) // Verify that list has data
{

samples.gotoBeginning(); // Go to beginning of list
do
total += samples.getCursor(); // Add element to running sum

while (samples.gotoNext()); // Go to next element (if any)
}

cout << “Sum is “ << total << endl;
}

Array Implementation of the List ADT | 55

Laboratory 3: Bridge Exercise

56 | Laboratory 3

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test programs that you used in Laboratory 1 consisted of a series of tests that were hard-
coded into the programs. Adding a new test case to this style of test program requires changing the
test program itself. In this and subsequent laboratories, you use a more flexible kind of test
program to evaluate your ADT implementations, one in which you specify a test case using
commands, rather than code. These interactive, command-driven test programs allow you to check
a new test case by simply entering a series of keyboard commands and observing the results.

The test program in the file test3.cpp, for instance, supports the following commands.

Command Action

+x Insert data item x after the cursor.
- Remove the data item marked by the cursor.
=x Replace the data item marked by the cursor with data item x.
@ Display the data item marked by the cursor.
N Go to the next data item.
P Go to the prior data item.
< Go to the beginning of the list.
> Go to the end of the list.
E Report whether the list is empty.
F Report whether the list is full.
C Clear the list.
Q Quit the test program.

Suppose you wish to confirm that your array implementation of the List ADT successfully
inserts a data item into a list that has been emptied by a series of calls to the remove operation.
You can test this case by entering the following sequence of keyboard commands.

Command +a +b - - +c Q

Action Insert a Insert b Remove Remove Insert c Quit

It is easy to see how this interactive test program allows you to rapidly examine a variety of
test cases. This speed comes with a price, however. You must be careful not to violate the
preconditions required by the operations that you are testing. For instance, the commands

Command +a +b - - -

Action Insert a Insert b Remove Remove Error
(exception)

cause the test program to fail during the last call to the remove operation. The source
of the failure does not lie in the implementation of the List ADT, nor is the test
program flawed. The failure occurs because this sequence of operations creates a state
that violates the preconditions of the remove operation (the list must not be empty
when the remove operation is invoked). The speed with which you can create and
evaluate test cases using an interactive, command-driven test program makes it very
easy to produce this kind of error. It is very tempting to just sit down and start
entering commands. A much better strategy, however, is to create a test plan, listing
the test cases you wish to check and then to write out command sequences that
generate these test cases. Of course, you should also deliberately violate function
requirements in order to test your exception handling.

Step 1: Compile and link the test program in the file test3.cpp. Note that when
compiling this program you need to ensure that DataType is defined as char
and that you also compile and link in your array implementation of the List
ADT (in the file listarr.cpp) to produce the correct executable for a list of
characters.

Step 2: Complete the following test plan by adding test cases that check whether your
implementation of the List ADT correctly handles the following tasks:

• Insertions into a newly emptied list

• Insertions that fill a list to its maximum size

• Deletions from a full list

• Determining whether a list is empty

• Determining whether a list is full

Assume that the output of one test case is used as the input to the following test case,
and note that although expected results are listed for the final command in each
command sequence, you should confirm that each command produces a correct result.

Step 3: Execute your test plan. If you discover mistakes in your implementation of
the List ADT, correct them and execute your test plan again.

Test Plan for the Operations in the List ADT
Test Case Commands Expected Result Checked

Insert at end +a +b +c +d a b c d

Travel from beginning < N N a b c d

Travel from end > P P a b c d

Delete middle data item – a c d

Insert in middle +e +f +f a c e f f d

Remove last data item >- a c e f f

Remove first data item <- c e f f

Display data item @ Returns c

Replace data item =g g e f f

Clear the list C Empty list

Note: The data item marked by the cursor is shown in bold.

Array Implementation of the List ADT | 57

Step 4: Change the list in the test program from a list of characters to a list of
integers by replacing the declaration for DataType in listarr.h and
testDataItem in test3.cpp with

typedef int DataType;
int testDataItem; // List data item

Step 5: Recompile and relink the test program. Note that recompiling the program
will compile your implementation of the List ADT (in the file listarr.cpp) to
produce an implementation for a list of integers.

Step 6: Replace the character data in your test plan (‘a’ to ‘g’) with integer values.

Step 7: Execute your revised test plan using the revised test program. If you discover
mistakes in your implementation of the List ADT, correct them and execute
your revised test plan again.

58 | Laboratory 3

Laboratory 3: In-lab Exercise 1

Array Implementation of the List ADT | 59

Name __ Date _______________________

Section ___

The genetic information encoded in a strand of deoxyribonucleic acid (DNA) is stored in the purine
and pyrimidine bases (adenine, guanine, cytosine, and thymine) that form the strand. Biologists are
keenly interested in the bases in a DNA sequence because these bases determine what the sequence
does.

By convention, DNA sequences are represented using lists containing the letters A, G, C, and T
(for adenine, guanine, cytosine, and thymine, respectively). The following function computes one
property of a DNA sequence—the number of times each base occurs in the sequence.

void countBases (List &dnaSequence, int &aCount,
int &cCount, int &tCount, int &gCount)

Input Parameters:
dnaSequence: contains the bases in a DNA sequence encoded using the characters A, C, T, and G.

Output Parameters:
aCount, cCount, tCount, gCount: the number of times the corresponding base appears in the DNA
sequence.

Step 1: Implement this function and add it to the program in the file test3dna.cpp. Your
implementation should manipulate the DNA sequence using the operations in the
List ADT. A prototype for this function is given in the file test3dna.cpp.

Step 2: The program in the file test3dna.cpp reads a DNA sequence from the keyboard, calls the
countBases() function, and outputs the resulting base counts. Complete the following
test plan by adding DNA sequences of different lengths and various combinations of
bases.

Step 3: Execute your test plan. If you discover mistakes in your implementation of the
countBases() function, correct them and execute your test plan again.

Test Plan for the countBases() Function
Test Case DNA Sequence Expected Result Checked

Sequence with 10 bases AGTACATGTA aCount = 4

cCount = 1

tCount = 3

gCount = 2

Laboratory 3: In-lab Exercise 2

60 | Laboratory 3

Name __ Date _______________________

Section ___

In many applications, the ordering of the data items in a list changes over time. Not only are new
data items added and existing ones removed, but data items are repositioned within the list. The
following List ADT operation moves a data item to a new position in a list.

void moveToNth (int n) throw (logic_error)

Requirements:
List contains at least n+1 data items.

Results:
Removes the data item marked by the cursor from a list and reinserts it as the nth data item in the
list, where the data items are numbered from beginning to end, starting with zero. Moves the
cursor to the moved data item.

Step 1: Implement this operation and add it to the file listarr.cpp. A prototype for this operation
is included in the declaration of the List class in the file listarr.h.

Step 2: Activate the ‘M’ (move) command in the test program test3.cpp by removing the
comment delimiter (and the character ‘M’) from the lines that begin with “//M”.

Step 3: Complete the following test plan by adding test cases that check whether your
implementation of the moveToNth operation correctly processes moves within full and
single data item lists.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the
moveToNth operation, correct them and execute your test plan again.

Test Plan for the moveToNth Operation
Test Case Commands Expected Result Checked

Set up list +a +b +c +d a b c d

Move first data item < M2 b c a d

Move data item back M0 a b c d

Move to end of list M3 b c d a

Move back one M2 b c a d

Move forward one M3 b c d a

Note: The data item marked by the cursor is shown in bold.

Laboratory 3: In-lab Exercise 3

Array Implementation of the List ADT | 61

Name __ Date _______________________

Section ___

Finding a particular list data item is another very common task. The following operation searches
a list for a specified data item. The fact that the search begins with the data item marked by the
cursor—and not at the beginning of the list—means that this operation can be applied iteratively to
locate all of the occurrences of a specified data item.

bool find (const DataType &searchDataItem) throw (logic_error)

Requirements:
List is not empty.

Results:
Searches a list for searchDataItem. Begins the search with the data item marked by the cursor.
Moves the cursor through the list until either searchDataItem is found (returns true) or the end
of the list is reached without finding searchDataItem (returns false). Leaves the cursor at the
last data item visited during the search.

Step 1: Implement this operation and add it to the file listarr.cpp. A prototype for this operation
is included in the declaration of the List class in the file listarr.h.

Step 2: Activate the ‘?’ (find) command in the test program test4.cpp by removing the comment
delimiter (and the character ‘?’) from the lines that begin with “//?”.

Step 3: Complete the following test plan by adding test cases that check whether your
implementation of the find operation correctly conducts searches in full lists, as well as
searches that begin with the last data item in a list.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the find
operation, correct them and execute your test plan again.

Test Plan for the find Operation
Test Case Commands Expected Result Checked

Set up list +a +b +c +a a b c a

Successful search < ?a Search succeeds

a b c a

Search for duplicate N ?a Search succeeds

a b c a

Successful search < ?b Search succeeds

a b c a

Search for duplicate N ?b Search fails

a b c a

Note: The data item marked by the cursor is shown in bold.

62 | Laboratory 3

Laboratory 3: Postlab Exercise 1

Array Implementation of the List ADT | 63

Name __ Date _______________________

Section ___

Given a list containing N data items, develop worst-case, order-of-magnitude estimates of the
execution time of the following List ADT operations, assuming they are implemented using an
array. Briefly explain your reasoning behind each estimate.

insert O()

Explanation:

remove O()

Explanation:

gotoNext O()

Explanation:

gotoPrior O()

Explanation:

64 | Laboratory 3

Laboratory 3: Postlab Exercise 2

Array Implementation of the List ADT | 65

Name __ Date _______________________

Section ___

Part A
Give a declaration—including typedef—for a list of floating-point numbers called echoReadings.
Assume that the list can contain no more than fifty floating-point numbers.

Part B
Give the declarations—including typedef—required for a list of (x,y,z)-coordinates called coords.
Assume that x, y, and z are floating-point numbers and that there will be no more than twenty
coordinates in the list.

Part C
Are the declarations you created in Parts A and B compatible with the operations in your
implementation of the List ADT? Briefly explain why or why not.

66 | Laboratory 3

In this laboratory you will:

Implement the Ordered List ADT using an array to
store the list data items and a binary search to locate
data items

Use inheritance to derive a new class from an existing
one

Create a program that reassembles a message that
has been divided into packets

Use ordered lists to create efficient merge and subset
operations

Analyze the efficiency of your implementation of the
Ordered List ADT

Ordered List ADT

O
bjectives

Overview

In an ordered list the data items are maintained in ascending (or descending) order
based on the data contained in the list data items. Typically, the contents of one field
are used to determine the ordering. This field is referred to as the key field, or the key.
In this laboratory, we assume that each data item in an ordered list has a key that
uniquely identifies the data item—that is, no two data items in any ordered list have
the same key. As a result, you can use a data item’s key to efficiently retrieve the data
item from a list.

68 | Laboratory 4

Ordered List ADT

Data Items
The data items in an ordered list are of generic type DataType. Each data item has a
key (of type char) that uniquely identifies the data item. Data items usually include
additional data. Type DataType must provide a function called getKey() that returns
a data item’s key.

Structure
The list data items are stored in ascending order based on their keys. For each list data
item E, the data item that precedes E has a key that is less than E’s key, and the data
item that follows E has a key that is greater than E’s key. At any point in time, one
data item in any nonempty list is marked using the list’s cursor. You travel through the
list using operations that change the position of the cursor.

Operations
List (int maxNumber = defMaxListSize) throw (bad_alloc)

Requirements:
None

Results:
Constructor. Creates an empty list. Allocates enough memory for a list containing
maxNumber data items.

~List ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a list.

void insert (const DataType &newDataItem) throw (logic_error)

Requirements:
List is not full.

Results:
Inserts newDataItem in its appropriate position within a list. If a data item with the
same key as newDataItem already exists in the list, then updates that data item’s
nonkey fields with newDataItem’s nonkey fields. Moves the cursor to mark
newDataItem.

Ordered List ADT | 69

bool retrieve (char searchKey, DataType &searchDataItem) const

Requirements:
None

Results:
Searches a list for the data item with key searchKey. If the data item is found, then
moves the cursor to the data item, copies it to searchDataItem, and returns true.
Otherwise, returns false without moving the cursor and with searchDataItem
undefined.

void remove () throw (logic_error)

Requirements:
List is not empty.

Results:
Removes the data item marked by the cursor from a list. If the resulting list is not
empty, then moves the cursor to the data item that followed the deleted data item. If
the deleted data item was at the end of the list, then moves the cursor to the beginning
of the list.

void replace (const DataType &newDataItem) throw (logic_error)

Requirements:
List is not empty.

Results:
Replaces the data item marked by the cursor with newDataItem. Note that this entails
removing the data item and inserting newDataItem. Moves the cursor to
newDataItem.

void clear ()

Requirements:
None

Results:
Removes all the data items in a list.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a list is empty. Otherwise, returns false.

70 | Laboratory 4

bool isFull () const

Requirements:
None

Results:
Returns true if a list is full. Otherwise, returns false.

void gotoBeginning () throw (logic_error)

Requirements:
List is not empty.

Results:
Moves the cursor to the data item at the beginning of the list.

void gotoEnd () throw (logic_error)

Requirements:
List is not empty.

Results:
Moves the cursor to the data item at the end of the list.

bool gotoNext () throw (logic_error)

Requirements:
List is not empty.

Results:
If the cursor is not at the end of a list, then moves the cursor to the next data item in
the list and returns true. Otherwise, returns false.

bool gotoPrior () throw (logic_error)

Requirements:
List is not empty.

Results:
If the cursor is not at the beginning of a list, then moves the cursor to the preceding
data item in the list and returns true. Otherwise, returns false.

DataType getCursor () const throw (logic_error)

Requirements:
List is not empty.

Results:
Returns a copy of the data item marked by the cursor.

Ordered List ADT | 71

void showStructure () const

Requirements:
None.

Results:
Outputs the keys of the data items in a list. If the list is empty, outputs “Empty list”.
Note that this operation is intended for testing/debugging purposes only. It only
supports keys that are one of C++’s predefined data types (int, char, and so forth).

72 | Laboratory 4

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 4: Cover Sheet

Ordered List ADT | 73

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 4: Prelab Exercise

Ordered List ADT | 75

Name __ Date _______________________

Section ___

There is a great deal of similarity between the Ordered List ADT and the List ADT. In fact, with the
exception of the insert, retrieve, and replace operations, these ADTs are identical. Rather than
implementing the Ordered List ADT from the ground up, you can take advantage of these
similarities by using your array implementation of the List ADT from Laboratory 3 as a foundation
for an array implementation of the Ordered List ADT.

A key feature of C++ is the ability to derive a new class from an existing one through
inheritance. The derived class inherits the member functions and data members of the existing
base class and can have its own member functions and data members as well. The following
declaration from the file ordlist.h derives a class called OrdList from the List class.

class OrdList : public List
{
public:

// Constructor
OrdList (int maxNumber = defMaxListSize);

// Modified (or new) list manipulation operations
virtual void insert (const DataType &newDataItem)

throw (logic_error);
virtual void replace (const DataType &newDataItem)

throw (logic_error);
bool retrieve (char searchKey, DataType &searchDataItem);

// Output the list structure — used in testing/debugging
void showStructure () const;

private:

// Locates a data item (or where it should be) based on its key
bool binarySearch (char searchKey, int &index);

};

The declaration

class OrdList : public List

indicates that OrdList is derived from List. The keyword “public” specifies that this is a public
inheritance—that is, OrdList inherits access to List’s public member functions, but not to its private
data members (or private member functions).

You want the member functions in OrdList to be able to refer to List’s private data
members, so you must change the data members in the List class declaration from
private to protected, as follows.

class List
{
...

protected:

// Data members
int maxSize, // Maximum number of data items in the list

size, // Actual number of data items in the list
cursor; // Cursor array index

DataType *dataItems; // Array containing the list data items
};

In a public inheritance, private List data members can only be accessed by List
member functions. Protected List data members, on the other hand, can be accessed by
the member functions in any class that is derived from List: OrdList, in this case.

The OrdList class supplies its own constructor, as well as a pair of new member
functions: a public member function retrieve() that retrieves a data item based on
its key, and a private member facilitator function binarySearch() that locates a data
item in the array using a binary search. The OrdList class also includes its own versions
of the insert() and replace() public member functions. The redefinition of these
functions is indicated by the use of the keyword virtual in their function prototypes.
Note that you must change this pair of functions to virtual in the List class declaration
as well.

class List
{
public:

...
// List manipulation operations
virtual void insert (const DataType &newDataItem) // Insert

throw (logic_error);
virtual void replace (const DataType &newDataItem) // Replace

throw (logic_error);
...

protected:

// Data members
int maxSize, // Maximum number of data items in the list

size, // Actual number of data items in the list
cursor; // Cursor array index

DataType *dataItems; // Array containing the list data items
};

A class declaration for the List class containing the changes specified above is
given in the file listarr2.h.

An OrdList object can call any of the List public member functions, as well as any
of its own member functions. The following program reads in the account number and

76 | Laboratory 4

balance for a set of accounts and outputs the accounts in ascending order based on
their account numbers.

#include <iostream>

struct DataType
{

int acctNum; // (Key) Account number
float balance; // Account balance

int getKey () const
{ return acctNum; } // Returns the key

};

#include “ordlist.cpp”

const int maxNameLength = 15;

void main()
{

OrdList accounts; // List of accounts
DataType acct; // A single account

// Read in information on a set of accounts.

cout << endl << “Enter account information (EOF to end) : ”
<< endl;

while (cin >> acct.acctNum >> acct.balance)
accounts.insert(acct);

// Output the accounts in ascending order based on their account
// numbers.

cout << endl;
if (!accounts.isEmpty())
{

accounts.gotoBeginning();
do
{

acct = accounts.getCursor();
cout << acct.acctNum << “ “ << acct.balance << endl;

}
while (accounts.gotoNext());

}
};

The Account structure includes a getKey() function that returns an account’s key
field—its account number. This function is used by the OrdList class to order the
accounts as they are inserted. Insertion is done using the OrdList class insert()
function, but list traversal is done using the inherited List class gotoBeginning() and
gotoNext() functions.

Another change from the Laboratory 3 List class implementation is that we will
not use typedef any more. We just declare a struct or class in the application
program (see preceding example) and name it DataType. To ensure that the code in
the OrdList class and in the List class have access to the type information, we include
the file ordlist.cpp—instead of ordlist.h—near the start of the application program on a

Ordered List ADT | 77

line below where DataType is declared. This goes against the principles of modular
coding, but it simplifies the implementation. Furthermore, we will need to use this
approach when we implement the next laboratory, the Stack ADT, using C++
templates.

We are introducing one more C++ programming technique that helps avoid the
accidental—and sometimes unavoidable—multiple inclusion of class implementation
files. For instance, assume that an application program needs ordered lists. It includes
the OrdList class, which in turn includes the List class. The programmer might now
include another class derived from the List class. The result is that the compiler
encounters the List class implementation twice and signals an error. The solution is to
use the C++ preprocessor to enable conditional compilation. Conditional compilation
allows the programmer to control what parts of a file the compiler will try to compile.
In this case, we ensure that the compiler only tries to compile the contents of each file
once, regardless of how many times the file has been included.

We protect ordlist.h by inserting three lines around the entire code contents of the
file as follows:

#ifndef ORDLIST_H
#define ORDLIST_H

... // The previous contents of the file

#endif

The line “#ifndef ORDLIST_H” means that if the string “ORDLIST_H” has not yet
been defined, then compile all the code up to the matching “#endif” line. The first
thing that happens within that block is that the identifier ORDLIST_H is defined. If the
compiler encounters the file again during that compilation, ORDLIST_H will be already
defined and all code up through the #endif will be ignored. The tradition for identifier
names is that they should match the file name. The period character (‘.’) is not valid
for identifiers, so it is replaced by the underscore (‘_’) character. Conditional
compilation by means of C++ preprocessor definitions becomes progressively more
useful as programs become larger and more complex.

Step 1: The showStructure() and find() functions from your array
implementation of the List ADT are designed for use with lists that are
composed of one of C++’s built-in types. Comment out these functions and
save the resulting implementation of the List ADT in the file listarr2.cpp.

Step 2: Implement the operations in the Ordered List ADT using the array
representation of a list. Base your implementation on the following
declaration from the file ordlist.h.

#include "listarr2.cpp"

class OrdList : public List
{
public:

// Constructor
OrdList (int maxNumber = defMaxListSize);

78 | Laboratory 4

// Modified (or new) list manipulation operations
virtual void insert (const DataType &newDataItem)

throw (logic_error);
virtual void replace (const DataType &newDataItem)

throw (logic_error);
bool retrieve (char searchKey, DataType &searchDataItem);

// Output the list structure -- used in testing/debugging
void showStructure () const;

private:

// Locates a data item (or where it should be) based on its key
bool binarySearch (char searchKey, int &index);

};

Note that you only need to create implementations of the constructor, insert,
replace, and retrieve operations for the Ordered List ADT—the remainder of
the operations are inherited from your array implementation of the List ADT.
Your implementations of the insert and retrieve operations should use the
binarySearch() function to locate a data item. An implementation of the
binary search algorithm is given in the file search.cpp. An implementation of
the showStructure operation is given in the file show4.cpp.

Step 3: Save your implementation of the Ordered List ADT in the file ordlist.cpp. Be
sure to document your code.

Ordered List ADT | 79

Laboratory 4: Bridge Exercise

80 | Laboratory 4

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program in the file test4.cpp allows you to interactively test your implementation of
the Ordered List ADT using the following commands.

Command Action

+key Insert (or update) the data item with the specified key.
?key Retrieve the data item with the specified key and output it.
- Remove the data item marked by the cursor.
@ Display the data item marked by the cursor.

=key Replace the data item marked by the cursor.
N Go to the next data item.
P Go to the prior data item.
< Go to the beginning of the list.
> Go to the end of the list.
E Report whether the list is empty.
F Report whether the list is full.
C Clear the list.
Q Quit the test program.

Step 1: Prepare a test plan for your implementation of the Ordered List ADT. Your test plan
should cover the application of each operation to data items at the beginning, middle,
and end of lists (where appropriate). A test plan form follows.

Step 2: Execute your test plan. If you discover mistakes in your implementation, correct them
and execute your test plan again.

Test Plan for the Operations in the Ordered List ADT
Test Case Commands Expected Result Checked

Ordered List ADT | 81

Laboratory 4: In-lab Exercise 1

When a communications site transmits a message through a packet-switching network,
it does not send the message as a continuous stream of data. Instead, it divides the
message into pieces called packets. These packets are sent through the network to a
receiving site, which reassembles the message. Packets may be transmitted to the
receiving site along different paths. As a result, they are likely to arrive out of
sequence. In order for the receiving site to reassemble the message correctly, each
packet must include the relative position of the packet within the message.

For example, if we break the message “A SHORT MESSAGE” into packets five
characters long and preface each packet with a number denoting the packet’s position
in the message, the result is the following set of packets.

1 A SHO
2 RT ME
3 SSAGE

No matter in what order these packets arrive, a receiving site can correctly reassemble
the message by placing the packets in ascending order based on their position
numbers.

Step 1: Create a program that reassembles the packets contained in a text file and
outputs the corresponding message. Your program should use the Ordered List
ADT to assist in reassembling the packets in a message. Assume that each
packet in the message file contains a position number and five characters
from the message (the packet format shown in the preceding paragraph). Base
your program on the following declarations.

const int packetSize = 6; // Number of characters in a packet
// including null (‘\0’) terminator

struct DataType
{

int position; // Packet’s position w/in the message
char body[packetSize]; // Characters in the packet

int key () const
{ return position; } // Returns the key field

};

Store your program in the file packet.cpp.

Step 2: Test your program using the message in the text file message.dat.

82 | Laboratory 4

Test Plan for the Message Processing Program
Test Case Checked

Message in the file message.dat

Ordered List ADT | 83

Laboratory 4: In-lab Exercise 2

84 | Laboratory 4

Name __ Date _______________________

Section ___

Suppose you wish to combine the data items in two ordered lists of similar size. You could use
repeated calls to the insert operation to insert the data items from one list into the other. However,
the resulting process would not be very efficient. A more effective approach is to use a specialized
merge operation that takes advantage of the fact that the lists are ordered.

void merge (const OrdList &fromL)

Requirements:
Lists have no keys in common.

Results:
Merges the data items in fromL into a list. Does not change fromL.

Even before you begin to merge the lists, you already know how much larger the list will
become (remember, no key is in both lists). By traversing the lists in parallel, starting with their
highest keys and working backward, you can perform the merge in a single pass. Given two
ordered lists, alpha and beta, containing the keys

alpha : a d j t
beta : b e w

the call

alpha.merge(beta);

produces the following results.

alpha : a b d e j t w
beta : b e w

Step 1: Implement this operation and add it to the file ordlist.cpp. A prototype for this operation
is included in the declaration of the Ordered List class in the file ordlist.h.

Step 2: Activate the ‘M’ (merge) command in the test program in the file test4two.cpp by
removing the comment delimiter (and the character ‘M’) from the lines that begin with
“//M”.

Step 3: Prepare a test plan for the merge operation that covers lists of various lengths, including
empty lists and lists that combine to produce a full list. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the merge
operation, correct them and execute your test plan again.

Test Plan for the Merge Operation
Test Case Commands Expected Result Checked

Ordered List ADT | 85

Laboratory 4: In-lab Exercise 3

86 | Laboratory 4

Name __ Date _______________________

Section ___

A set of objects can be represented in many ways. If you use an unordered list to represent a set,
then performing set operations such as intersection, union, difference, and subset requires up to
O(N2) time. By using an ordered list to represent a set, however, you can reduce the execution time
for these set operations to O(N), a substantial improvement.

Consider the following subset operation. If the sets are stored as unordered lists, this operation
requires that you traverse the list once for each data item in subL. But if the sets are stored as
ordered lists, only a single traversal is required. The key is to move through the lists in parallel.

bool isSubset (const OrdList &subL) const

Requirements:
None

Results:
Returns true if every key in subL is also in a list. Otherwise, returns false.

Given three ordered lists, alpha, beta, and gamma, containing the keys

alpha : a b c d
beta : a c x
gamma : a b
delta : <empty list>

the call alpha.isSubset(beta) yields the value false (beta is not a subset of alpha), the call
alpha.isSubset(gamma) yields the value true (gamma is a subset of alpha), and the calls
alpha.isSubset(delta) and beta.isSubset(delta) yield the value true (the empty set is a
subset of every set).

Step 1: Implement this operation and add it to the file ordlist.cpp. A prototype for this operation
is included in the declaration of the Ordered List class in the file ordlist.h.

Step 2: Activate the ‘S’ (subset) command in the test program in the file test4two.cpp by
removing the comment delimiter (and the character ‘S’) from the lines that begin with
“//S”.

Step 3: Prepare a test plan for the subset operation that covers lists of various lengths, including
empty lists. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the subset
operation, correct them and execute your test plan again.

Test Plan for the Subset Operation
Test Case Commands Expected Result Checked

Ordered List ADT | 87

Laboratory 4: Postlab Exercise 1

Ordered List ADT | 89

Name __ Date _______________________

Section ___

Part A
Given an ordered list containing N data items, develop worst-case, order-of-magnitude estimates
of the execution time of the steps in the insert operation, assuming this operation is implemented
using an array in conjunction with a binary search. Briefly explain your reasoning behind each
estimate.

Array Implementation of the Insert Operation
Find the insertion point O()

Insert the data item O()

Entire operation O()

Explanation:

Part B
Suppose you had implemented the Ordered List ADT using a linear search rather than a binary
search. Given an ordered list containing N data items, develop worst-case, order-of-magnitude
estimates of the execution time of the steps in the insert operation. Briefly explain your reasoning
behind each estimate.

Linked List Implementation of the Insert Operation
Find the insertion point O()

Insert the data item O()

Entire operation O()

Explanation:

90 | Laboratory 4

Laboratory 4: Postlab Exercise 2

Ordered List ADT | 91

Name __ Date _______________________

Section ___

In specifying the Ordered List ADT, we assumed that no two data items in an ordered list have the
same key. What changes would you have to make to your implementation of the Ordered List ADT
in order to support ordered lists in which multiple data items have the same key?

In this laboratory you will

Create two implementations of the Stack ADT—one
based on an array representation of stack, the other
based on a singly linked list representation

Use templates to produce a generic stack data
structure

Create a program that evaluates arithmetic
expressions in postfix form

Create a program that evaluates expressions for
properly balanced pairs of parentheses and braces

Analyze the kinds of permutations you can produce
using a stack

Stack ADT

O
bjectives

Overview

Many applications that use a linear data structure do not require the full range of
operations supported by the List ADT. Although you can develop these applications
using the List ADT, the resulting programs are likely to be somewhat cumbersome and
inefficient. An alternative approach is to define new linear data structures that support
more constrained sets of operations. By carefully defining these ADTs, you can
produce ADTs that meet the needs of a diverse set of applications but yield data
structures that are easier to apply—and are often more efficient—than the List ADT.

The stack is one example of a constrained linear data structure. In a stack, the data
items are ordered from most recently added (the top) to least recently added (the
bottom). All insertions and deletions are performed at the top of the stack. You use the
push operation to insert a data item onto the stack and the pop operation to remove
the topmost stack data item. A sequence of pushes and pops is shown below.

Push a Push b Push c Pop Pop
c

b b b
a a a a a

—— —— —— —— ——

These constraints on insertion and deletion produce the “last in, first out” (LIFO)
behavior that characterizes a stack. Although the stack data structure is narrowly
defined, it is so extensively used by systems software that support for a primitive stack
is one of the basic data items of most computer architectures.

The stack is one of the most frequently used data structures. Although all
programs share the same definition of stack—a sequence of homogeneous data items
with insertion and removal done at one end—the type of data items stored in stacks
varies from program to program. Some use stacks of integers; others use stacks of
characters, floating-point numbers, points, and so forth.

In Lab 3 you dealt with this problem by using the C++ typedef statement. That
approach can be made to work, but it is laborious and error-prone. We mentioned that
a better approach would be introduced here, in Lab 5.

That better approach is the C++ template class. A template is something that
serves as a pattern. The pattern is not the final product, but is used to enable faster
production of a final product. C++ template classes—of which the stack is an example—
save you from needing to create a different stack implementation for each type of
stack data item and from constantly playing with typedef. Instead, you create the
stack implementation in terms of a generic data type. Every place in your code where
you would normally have to specify the data type, you instead use an arbitrary string
to represent any actual data type that you might later wish to use. We will use the
arbitrary string “DT”—for Data Type—to represent the generic data type. Nowhere does
either the class declaration (the class.h file) or the class definition (the class.cpp file)
specify an actual C++ data type. You can defer specifying the actual data type until it
is time to instantiate (create) an object of that class.

Following are a few simple rules for creating and using a template class.

94 | Laboratory 5

• The string “template < class DT >” must go right before the class declaration
and before every class member function. Remember, DT is our arbitrary identifier
that will represent any data type in the template class. So the lines

class Stack
{
public:
...

are changed to

template < class DT >
class Stack
{
public:
...

The start of a function definition that used to be

Stack:: Stack (int maxNumber) throw (bad_alloc)

now becomes

template < class DT >
Stack<DT>:: Stack (int maxNumber) throw (bad_alloc)

Every use of the class name now must include the generic data type name
enclosed in angle brackets. Every instance of the string “Stack” becomes
“Stack<DT>”. In the example constructor definition, the class resolution
“Stack::” becomes “Stack<DT>::”. Also note that the exception to the rule is
that the constructor name is not modified—it remains just “Stack”.

template < class DT >
Stack<DT>:: Stack (int maxNumber) throw (bad_alloc)

• Every occurrence of the data type name inside the class declaration and definition
files gets replaced by the string chosen to represent the generic data type. For
instance, the line

int *dataItems; // Array containing the stack data items
// (integers)

becomes

DT *dataItems; // Array containing the stack data items
// (generic)

• When it is time to instantiate an object of that class, the real data type—inside
angle brackets—is appended to the class name. So the lines

// A separate stack implementation just for integers
IntStack samples(10);

// Data type specified elsewhere by using typedef
Stack line(80);

Stack ADT | 95

now become

// We tell the compiler to make a copy of the generic stack just
// for integers and to make another just for characters.
Stack<int> samples(10);
Stack<char> line(80);

• The code in the implementation file—the classname.cpp file—provides a template
(or framework) for a set of implementations of the class ADT. The type of the data
item is deliberately left unspecified in this framework and is not made specific
until an object of the class is instantiated. As a result, the compiler must have
access to the code in the .cpp file whenever it encounters a list declaration so that
it can construct an implementation for the declared type of data item.
Sophisticated program development environments provide a variety of
mechanisms for ensuring access to this code. Unfortunately, these mechanisms are
not yet standardized across systems. In this book you use a mechanism that is
primitive but effective. You include the implementation file—classname.cpp—rather
than the header file—classname.h—in any program that used this class. This
approach violates the rule that you should never use a #include directive to
include code. Most systems, however, provide no other means for using templated
classes short of putting all the code for a program in one file (a much worse
approach).

A partial template class declaration for the Stack ADT is shown below (the
complete declaration is given in the Prelab Exercise).

template < class DT >
class Stack
{
public:
...
Stack (int maxNumber = defMaxStackSize) // Constructor

throw (bad_alloc);
void push (const DT &newDataItem) // Push data item

throw (logic_error);
DT pop () // Pop data item

throw (logic_error);
...

private:
...
DT *dataItems; // Array containing the stack data items

};

Note the occurrences of the template parameter DT within the class declaration.
This parameter is used to mark locations where explicit references are made to the
stack data item type.

96 | Laboratory 5

Stack ADT

Data items
The data items in a stack are of generic type DT.

Structure
The stack data items are linearly ordered from most recently added (the top) to least
recently added (the bottom). Data items are inserted onto (pushed) and removed from
(popped) the top of the stack.

Operations

Stack (int maxNumber = defMaxStackSize) throw (bad_alloc)

Requirements:
None

Results:
Constructor. Creates an empty stack. Allocates enough memory for a stack containing
maxNumber data items (if necessary).

~Stack ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a stack.

void push (const DT &newDataItem) throw (logic_error)

Requirements:
Stack is not full.

Results:
Inserts newDataItem onto the top of a stack.

DT pop () throw (logic_error)

Requirements:
Stack is not empty.

Results:
Removes the most recently added (top) data item from a stack and returns it.

Stack ADT | 97

void clear ()

Requirements:
None

Results:
Removes all the data items in a stack.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a stack is empty. Otherwise, returns false.

bool isFull () const

Requirements:
None

Results:
Returns true if a stack is full. Otherwise, returns false.

void showStructure () const

Requirements:
None

Results:
Outputs the data items in a stack. If the stack is empty, outputs “Empty stack”. Note
that this operation is intended for testing/debugging purposes only. It only supports
stack data items that are one of C++’s predefined data types (int, char, and so forth).

98 | Laboratory 5

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 5: Cover Sheet

Stack ADT | 99

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 5: Prelab Exercise

Stack ADT | 101

Name __ Date _______________________

Section ___

Multiple implementations of an ADT are necessary if the ADT is to perform efficiently in a variety
of operating environments. Depending on the hardware and the application, you may want an
implementation that reduces the execution time of some (or all) of the ADT operations, or you may
want an implementation that reduces the amount of memory used to store the ADT data items. In
this laboratory you will develop two implementations of the Stack ADT. One implementation stores
the stack in an array, the other stores each data item separately and links the data items together
to form a stack.

Step 1: Implement the operations in the Stack ADT using an array to store the stack data items.
Stacks change in size; therefore, you need to store the maximum number of data items
the stack can hold (maxSize) and the array index of the topmost data item in the stack
(top), along with the stack data items themselves (dataItems). Base your
implementation on the following declarations from the file stackarr.h. An implementation
of the showStructure operation is given in the file show5.cpp.

const int defMaxStackSize = 10; // Default maximum stack size

template < class DT >
class Stack
{
public:

// Constructor
Stack (int maxNumber = defMaxStackSize) throw (bad_alloc);

// Destructor
~Stack ();

// Stack manipulation operations
void push (const DT &newDataItem) // Push data item

throw (logic_error);
DT pop () // Pop data item

throw (logic_error);
void clear (); // Clear stack

// Stack status operations
bool isEmpty () const; // Stack is empty
bool isFull () const; // Stack is full

// Output the stack structure — used in testing/debugging
void showStructure () const;

private:

// Data members
int maxSize, // Maximum number of data items in the stack

top; // Index of the top data item
DT *dataItems; // Array containing the stack data items

};

Step 2: Save your array implementation of the Stack ADT in the file stackarr.cpp. Be
sure to document your code.

In your array implementation of the Stack ADT, you allocate the memory used to
store a stack when the stack is declared (constructed). The resulting array must be large
enough to hold the largest stack you might possibly need in a particular application.
Unfortunately, most of the time the stack will not actually be this large and the extra
memory will go unused.

An alternative approach is to allocate memory data item by data item as new data
items are added to the stack. In this way, you allocate memory only when you actually
need it. Because memory is allocated over time, however, the data items do not occupy
a contiguous set of memory locations. As a result, you need to link the data items
together to form a linked list representation of a stack, as shown in the following
figure.

Creating a linked list implementation of the Stack ADT presents a somewhat more
challenging programming task than did developing an array implementation. One way
to simplify this task is to divide the implementation into two templated classes: one
focusing on the overall stack structure (the Stack class) and another focusing on the
individual nodes in the linked list (the StackNode class).

Let’s begin with the StackNode class. Each node in the linked list contains a stack
data item and a pointer to the node containing the next data item in the list. The only
function provided by the StackNode class is a constructor that creates a specified
node.

Access to the StackNode class is restricted to member functions of the Stack
class. Other classes are blocked from referencing linked list nodes directly by declaring
all the members of StackNode to be private. The members of StackNode are made
accessible to the Stack class by declaring Stack to be a friend of StackNode. These
properties are reflected in the following class declaration from the file stacklnk.h.

template < class DT > // Forward declaration of the Stack class
class Stack;

template < class DT >
class StackNode // Facilitator class for the Stack class
{
private:

top

c b a

102 | Laboratory 5

// Constructor
StackNode (const DT &nodeData, StackNode *nextPtr);

// Data members
DT dataItem; // Stack data item
StackNode *next; // Pointer to the next data item

friend class Stack<DT>;
};

Notice the first two lines in the StackNode declaration above. The forward
declaration is how C++ solves a classic compiler dilemma. StackNode makes reference
to Stack in the statement

friend class Stack<DT>;

but the compiler has not yet encountered Stack and would normally issue an error
message about referencing an unknown data type. We could move the declaration of
Stack up above that of StackNode, thus ensuring that the compiler would have
already seen Stack before it is referenced in StackNode. The problem that arises then
is that the declaration of Stack contains a reference to StackNode before StackNode
is declared. This is a catch-22, because they can’t both occur first in the program.

C++ solves this problem by allowing the existence of a data type to be announced
before it is actually declared. The compiler notes that it will be declared later and
continues. This is similar to the introduction of a function prototype at the beginning
of a program, well before the function definition is encountered.

The StackNode class constructor is used to add nodes to the stack. The following
statement, for example, adds a node containing ‘d’ to a stack of characters. Note that
template parameter DT must be equivalent to type char and top is of type
StackNode*.

top = new StackNode<DT>(‘d’,top);

The new operator allocates memory for a linked list node and calls the StackNode
constructor passing both the data item to be inserted (‘d’) and a pointer to next node in
the list (top).

Finally, the assignment operator assigns a pointer to the newly allocated node to top,
thereby completing the creation and linking of the node.

top

d c b a

top

d c b a

Stack ADT | 103

The member functions of the Stack class implement the operations in the Stack
ADT. A pointer is maintained to the node at the beginning of the linked list or,
equivalently, the top of the stack. The following declaration for the Stack class is
given in the file stacklnk.h.

template < class DT >
class Stack
{
public:

// Constructor
Stack (int ignored = 0);

// Destructor
~Stack ();

// Stack manipulation operations
void push (const DT &newDataItem) // Push data item

throw (bad_alloc);
DT pop () // Pop data item

throw (logic_error);
void clear (); // Clear stack

// Stack status operations
bool isEmpty () const; // Is stack empty?
bool isFull () const; // Is stack full?

// Output the stack structure — used in testing/debugging
void showStructure () const;

private:

// Data member
StackNode<DT> *top; // Pointer to the top data item

};

Step 3: Implement the operations in the Stack ADT using a singly linked list to store
the stack data items. Each node in the linked list should contain a stack data
item (dataItem) and a pointer to the node containing the next data item in
the stack (next). Your implementation also should maintain a pointer to the
node containing the topmost data item in the stack (top). Base your
implementation on the class declarations in the file stacklnk.h. An
implementation of the showStructure operation is given in the file
show5.cpp.

Step 4: Save your linked list implementation of the Stack ADT in the file
stacklnk.cpp. Be sure to document your code.

104 | Laboratory 5

Laboratory 5: Bridge Exercise

Stack ADT | 105

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program in the file test5.cpp allows you to interactively test your implementation of
the Stack ADT using the following commands.

Command Action

+x Push data item x onto the top of the stack.
- Pop the top data item and output it.
E Report whether the stack is empty.
F Report whether the stack is full.
C Clear the stack.
Q Exit the test program.

Step 1: Compile and link the test program. Note that compiling this program will compile your
array implementation of the Stack ADT (in the file stackarr.cpp) to produce an array
implementation for a stack of characters.

Step 2: Complete the following test plan by adding test cases in which you

• Pop a data item from a stack containing only one data item

• Push a data item onto a stack that has been emptied by a series of pops

• Pop a data item from a full stack (array implementation)

• Clear the stack

Step 3: Execute your test plan. If you discover mistakes in your array implementation of the
Stack ADT, correct them and execute your test plan again.

Step 4: Modify the test program so that your linked list implementation of the Stack ADT in the
file stacklnk.cpp is included in place of your array implementation.

Step 5: Recompile and relink the test program. Note that recompiling this program will compile
your linked list implementation of the Stack ADT (in the file stacklnk.cpp) to produce a
linked list implementation for a stack of characters.

Step 6: Use your test plan to check your linked list implementation of the Stack ADT. If you
discover mistakes in your implementation, correct them and execute your test plan again.

Test Plan for the Operations in the Stack ADT
Test Case Commands Expected Result Checked

Series of pushes +a +b +c +d a b c d

Series of pops - - - a

More pushes +e +f a e f

More pops - - a

Empty? Full? E F False False

Empty the stack - Empty stack

Empty? Full? E F True False

Note: The topmost data item is shown in bold.

106 | Laboratory 5

Laboratory 5: In-lab Exercise 1

Stack ADT | 107

Name __ Date _______________________

Section ___

We commonly write arithmetic expressions in infix form, that is, with each operator placed
between its operands, as in the following expression:

(3 + 4) * (5 / 2)

Although we are comfortable writing expressions in this form, infix form has the disadvantage
that parentheses must be used to indicate the order in which operators are to be evaluated. These
parentheses, in turn, greatly complicate the evaluation process.

Evaluation is much easier if we can simply evaluate operators from left to right.
Unfortunately, this evaluation strategy will not work with the infix form of arithmetic expressions.
However, it will work if the expression is in postfix form. In the postfix form of an arithmetic
expression, each operator is placed immediately after its operands. The expression above is written
in postfix form as

3 4 + 5 2 / *

Note that both forms place the numbers in the same order (reading from left to right). The order of
the operators is different, however, because the operators in the postfix form are positioned in the
order in which they are evaluated. The resulting postfix expression is hard to read at first, but it is
easy to evaluate. All you need is a stack on which to place intermediate results.

Suppose you have an arithmetic expression in postfix form that consists of a sequence of
single-digit, nonnegative integers and the four basic arithmetic operators (addition, subtraction,
multiplication, and division). This expression can be evaluated using the following algorithm in
conjunction with a stack of floating-point numbers.

Read in the expression character by character. As each character is read in:

• If the character corresponds to a single-digit number (characters ‘0’ to ‘9’), then push the
corresponding floating-point number onto the stack.

• If the character corresponds to one of the arithmetic operators (characters ‘+’, ‘–’, ‘*’, and ‘/’),
then

• Pop a number off of the stack. Call it operand1.
• Pop a number off of the stack. Call it operand2.
• Combine these operands using the arithmetic operator, as follows:

Result = operand2 operator operand1
• Push result onto the stack.
• When the end of the expression is reached, pop the remaining number off the stack. This

number is the value of the expression.

Applying this algorithm to the arithmetic expression

3 4 + 5 2 / *

yields the following computation

‘3’ : Push 3.0

‘4’ : Push 4.0

‘+’ : Pop, operand1 = 4.0

Pop, operand2 = 3.0

Combine, result = 3.0 + 4.0 = 7.0

Push 7.0

‘5’ : Push 5.0

‘2’ : Push 2.0

‘/’ : Pop, operand1 = 2.0

Pop, operand2 = 5.0

Combine, result = 5.0 / 2.0 = 2.5

Push 2.5

‘*’ : Pop, operand1 = 2.5

Pop, operand2 = 7.0

Combine, result = 7.0 * 2.5 = 17.5

Push 17.5

‘\n’ : Pop, Value of expression = 17.5

Step 1: Create a program that reads the postfix form of an arithmetic expression,
evaluates it, and outputs the result. Assume that the expression consists of
single-digit, nonnegative integers (‘0’ to ‘9’) and the four basic arithmetic
operators (‘+’, ‘—’, ‘*’, and ‘/’). Further assume that the arithmetic expression
is input from the keyboard with all the characters on one line. Save your
program in a file called postfix.cpp.

Step 2: Complete the following test plan by filling in the expected result for each
arithmetic expression. You may wish to include additional arithmetic
expressions in this test plan.

Step 3: Execute the test plan. If you discover mistakes in your program, correct them
and execute the test plan again.

108 | Laboratory 5

Test Plan for the Postfix Arithmetic Expression Evaluation Program
Test Case Arithmetic Expression Expected Result Checked

One operator 34+

Nested operators 34+52/*

Uneven nesting 93*2+1–

All operators at end 4675–+*

Zero dividend 02/

Single-digit number 7

Stack ADT | 109

Laboratory 5: In-lab Exercise 2

110 | Laboratory 5

Name __ Date _______________________

Section ___

Rather than have the array implementation of a stack grow upward from array entry 0 toward
entry maxSize—1, you can just as easily construct an implementation that begins at array entry
maxSize—1 and grows downward toward entry 0. You could then combine this “downward” array
implementation with the “upward” array implementation you created in the Prelab to form an
implementation of a Double Stack ADT in which a pair of stacks occupy the same array—assuming
that the total number of data items in both stacks never exceeds maxSize.

If this appears to be a strange type of double stack, it is not one that we have made up. It is a
classic approach to managing part of a process’s memory in operating systems.

Step 1: Create an implementation of the Stack ADT using an array in which the stack grows
downward. Base your implementation on the declarations in the file stackdwn.h (these are
identical to the declarations in the file stackarr.h). An implementation of the
showStructure operation is given in the file show5.cpp.

Step 2: Save your “downward” array implementation of the Stack ADT in the file stackdwn.cpp.

Step 3: Modify the test program test5.cpp so that your “downward” array implementation of the
Stack ADT in the file stackdwn.cpp is included in place of your “upward” array
implementation.

Step 4: Use the test plan you created in In-lab Exercise 1 to check your “downward” array
implementation of the Stack ADT. If you discover mistakes in your implementation,
correct them and execute your test plan again.

Laboratory 5: In-lab Exercise 3

Stack ADT | 111

Name __ Date _______________________

Section ___

One of the tasks that compilers and interpreters must frequently perform is deciding whether some
pairs of expression delimiters are properly paired, even if they are embedded multiple pairs deep.
Consider the following C++ expression.

a = (f[b] — (c+d)) / 2;

The compiler has to be able to determine which pairs of opening and closing delimiters—
parentheses, square braces, etc.—go together and whether the whole expression is correctly
delimited. A number of possible errors can occur because of unpaired delimiters or because of
improperly placed delimiters. For instance, the expression below lacks a closing parenthesis.

a = (f[b] — (c+d) / 2;

The following expression is also invalid. There are the correct numbers of parenthesis and braces,
but they are not correctly balanced. The first closing parenthesis does not match the most recent
opening delimiter, a brace.

a = (f[b) — (c+d]) / 2;

A stack is extremely helpful in implementing solutions to this type of problem because of its
LIFO—Last In, First Out—behavior. A closing delimiter must correctly match the most recently
encountered opening delimiter. This is handled by pushing opening delimiters onto a stack as they
are encountered. When a closing delimiter is encountered, it should be possible to pop the
matching opening delimiter off the stack. If it is determined that every closing delimiter had a
matching opening delimiter, then the expression is valid.

bool delimitersOk(const string &expression)

Requirements:
None

Results:
Returns true if all the parentheses and braces in the string are legally paired. Otherwise, returns
false.

Step 1: Save a copy of the file delim.cs as delim.cpp. Implement the delimitersOk operation inside
the delim.cpp program file.

Step 2: Complete the following test plan by adding test cases that check whether your
implementation of the delimitersOk operation correctly detects improperly paired
delimiters in input expressions. Note that it is not required that the input be valid C++
expressions, just that the delimiters are properly used.

Step 3: Execute your test plan. If you discover mistakes in your implementation of
the delimitersOk function, correct them and execute the test plan again.

Test Plan for the delimitersOk operation
Test Case Commands Expected Result Checked

Valid expression with 3 * (a+b) true
parentheses

Valid expression with mixed f[3 * (a+b)] true
delimiters

Invalid expression with (f[b)–(c+d])/2; false
mixed delimiters

Empty expression Empty string<Newline> true

Improperly paired brace a = f[b + 3

Note: The improperly matched delimiters are shown in bold.

112 | Laboratory 5

Laboratory 5: Postlab Exercise 1

Stack ADT | 113

Name __ Date _______________________

Section ___

Given the input string “abc”, which of the permutations of this string listed in part A can be
output by a code fragment consisting of only the statement pairs

cin >> ch; permuteStack.push(ch);

and

ch = permuteStack.pop(); cout << ch;

where ch is a character and permuteStack is a stack of characters? Note that each of the
statement pairs may be repeated several times within the code fragment and that the statement
pairs may be in any order. For instance, the code fragment

cin >> ch; permuteStack.push(ch);
cin >> ch; permuteStack.push(ch);
cin >> ch; permuteStack.push(ch);
ch = permuteStack.pop(); cout << ch;
ch = permuteStack.pop(); cout << ch;
ch = permuteStack.pop(); cout << ch;

outputs the string “cba”.

Part A
For each of the permutations listed below, give a code fragment that outputs the permutation or a
brief explanation of why the permutation cannot be produced.

“abc” “acb”

“bac” “bca”

“cab” “cba”

Part B
Given the input string “abcd”, which four-character permutations beginning with the character ‘d’
can be output by a code fragment of the form described above? Why can only these permutations
be produced?

114 | Laboratory 5

Laboratory 5: Postlab Exercise 2

Stack ADT | 115

Name __ Date _______________________

Section ___

In In-lab Exercise 1, you used a stack to evaluate arithmetic expressions. Describe another
application where you might use the Stack ADT. What type of information does your application
store in each stack data item?

In this laboratory you will

Create two implementations of the Queue ADT—one
based on an array representation of a queue, the
other based on a singly linked list representation

Create a program that simulates the flow of
customers through a line

Create an array implementation of a dequeue

Analyze the memory requirements of your array and
linked list queue representations

Queue ADT

O
bjectives

Overview

This laboratory focuses on another constrained linear data structure, the queue. The
data items in a queue are ordered from least recently added (the front) to most recently
added (the rear). Insertions are performed at the rear of the queue and deletions are
performed at the front. You use the enqueue operation to insert data items and the
dequeue operation to remove data items. A sequence of enqueues and dequeues is
shown below.

Enqueue a Enqueue b Enqueue c Dequeue Dequeue
a a b a b c b c c
←front ←front ←front ←front ←front

The movement of data items through a queue reflects the “first in, first out” (FIFO)
behavior that is characteristic of the flow of customers in a line or the transmission of
information across a data channel. Queues are routinely used to regulate the flow of
physical objects, information, and requests for resources (or services) through a system.
Operating systems, for example, use queues to control access to system resources such
as printers, files, and communications lines. Queues also are widely used in simulations
to model the flow of objects or information through a system.

118 | Laboratory 6

Queue ADT

Data Items
The data items in a queue are of generic type DT.

Structure
The queue data items are linearly ordered from least recently added (the front) to most
recently added (the rear). Data items are inserted at the rear of the queue (enqueued)
and are removed from the front of the queue (dequeued).

Operations

Queue (int maxNumber = defMaxQueueSize) throw (bad_alloc)

Requirements:
None

Results:
Constructor. Creates an empty queue. Allocates enough memory for a queue containing
maxNumber data items (if necessary).

~Queue ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a queue.

void enqueue (const DT &newDataItem) throw (logic_error)

Requirements:
Queue is not full.

Results:
Inserts newDataItem at the rear of a queue.

DT dequeue () throw (logic_error)

Requirements:
Queue is not empty.

Results:
Removes the least recently added (front) data item from a queue and returns it.

Queue ADT | 119

void clear ()

Requirements:
None

Results:
Removes all the data items in a queue.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a queue is empty. Otherwise, returns false.

bool isFull () const

Requirements:
None

Results:
Returns true if a queue is full. Otherwise, returns false.

void showStructure () const

Requirements:
None

Results:
Outputs the data items in a queue. If the queue is empty, outputs “Empty queue”. Note
that this operation is intended for testing/debugging purposes only. It only supports
queue data items that are one of C++’s predefined data types (int, char, and so forth).

120 | Laboratory 6

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 6: Cover Sheet

Queue ADT | 121

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 6: Prelab Exercise

Queue ADT | 123

Name __ Date _______________________

Section ___

In this laboratory you will create two implementations of the Queue ADT. One of these
implementations is based on an array; the other is based on a singly linked list. Following the
example introduced in Lab 5, the generic data type will be named DT for Data Type.

Step 1: Implement the operations in the Queue ADT using an array to store the queue data items.
Queues change in size; therefore, you need to store the maximum number of data items
the queue can hold (maxSize) and the array index of the data items at the front and rear
of the queue (front and rear), along with the queue data items themselves
(dataItems). Base your implementation on the following declarations from the file
queuearr.h. An implementation of the showStructure operation is given in the file
show6.cpp.

const int defMaxQueueSize = 10; // Default maximum queue size

template < class DT >
class Queue
{
public:

// Constructor
Queue (int maxNumber = defMaxQueueSize) throw (bad_alloc);

// Destructor
~Queue ();

// Queue manipulation operations
void enqueue (const DT &newData) // Enqueue data item

throw (logic_error);
DT dequeue () // Dequeue data item

throw (logic_error);
void clear (); // Clear queue

// Queue status operations
bool isEmpty () const; // Queue is empty
bool isFull () const; // Queue is full

// Output the queue structure — used in testing/debugging
void showStructure () const;

private:

// Data members
int maxSize, // Maximum number of data data items in the queue

front, // Index of the front data data item
rear; // Index of the rear data data item

DT *dataItems; // Array containing the queue data items
};

Step 2: Save your array implementation of the Queue ADT in the file queuearr.cpp.
Be sure to document your code.

Step 3: Implement the operations in the Queue ADT using a singly linked list to store
the queue data items. Each node in the linked list should contain a queue
data item (dataItem) and a pointer to the node containing the next data item
in the queue (next). Your implementation also should maintain pointers to
the nodes containing the front and rear data items in the queue (front and
rear). Base your implementation on the following declarations from the file
queuelnk.h. An implementation of the showStructure operation is given in
the file show6.cpp.

template < class DT > // Forward declaration of the Queue class
class Queue;

template < class DT >
class QueueNode // Facilitator class for the Queue class
{
private:

// Constructor
QueueNode (const DT &nodeData, QueueNode *nextPtr);

// Data members
DT dataItem; // Queue data item
QueueNode *next; // Pointer to the next data item

friend class Queue<DT>;
};

template < class DT >
class Queue
{
public:

// Constructor
Queue (int ignored = 0);

// Destructor
~Queue ();

// Queue manipulation operations
void enqueue (const DT &newData) // Enqueue data data item

throw (logic_error);

124 | Laboratory 6

DT dequeue () // Dequeue data data item
throw (logic_error);

void clear (); // Clear queue

// Queue status operations
bool isEmpty () const; // Queue is empty
bool isFull () const; // Queue is full

// Output the queue structure — used in testing/debugging
void showStructure () const;

private:

// Data members
QueueNode<DT> *front, // Pointer to the front node

*rear; // Pointer to the rear node
};

Step 4: Save your linked list implementation of the Queue ADT in the file
queuelnk.cpp. Be sure to document your code.

Queue ADT | 125

Laboratory 6: Bridge Exercise

126 | Laboratory 6

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program in the file test6.cpp allows you to interactively test your implementations of
the Queue ADT using the following commands.

Command Action

+x Enqueue data item x.
- Dequeue a data item and output it.
E Report whether the queue is empty.
F Report whether the queue is full.
C Clear the queue.
Q Exit the test program.

Step 1: Compile and link the test program. Note that compiling this program will compile your
array implementation of the Queue ADT (in the file queuearr.cpp) to produce an array
implementation for a queue of characters.

Step 2: Complete the following test plan by adding test cases in which you

• Enqueue a data item onto a queue that has been emptied by a series of dequeues

• Combine enqueues and dequeues so that you “go around the end” of the array (array
implementation)

• Dequeue a data item from a full queue (array implementation)

• Clear the queue

Step 3: Execute your test plan. If you discover mistakes in your array implementation of the
Queue ADT, correct them and execute your test plan again.

Step 4: Modify the test program so that your linked list implementation of the Queue ADT in the
file queuelnk.cpp is included in place of your array implementation.

Step 5: Recompile and relink the test program. Note that recompiling this program will compile
your linked list implementation of the Queue ADT (in the file queuelnk.cpp) to produce a
linked list implementation for a queue of characters.

Step 6: Use your test plan to check your linked list implementation of the Queue ADT. If you
discover mistakes in your implementation, correct them and execute your test plan again.

Test Plan for the Operations in the Queue ADT
Test Case Commands Expected Result Checked

Series of enqueues +a +b +c +d a b c d

Series of dequeues - - - d

More enqueues +e +f d e f

More dequeues - - f

Empty? Full? E F False False

Empty the queue - Empty queue

Empty? Full? E F True False

Note: The front data item is shown in bold.

Queue ADT | 127

Laboratory 6: In-lab Exercise 1

128 | Laboratory 6

Name __ Date _______________________

Section ___

In this exercise you will use a queue to simulate the flow of customers through a check-out line in
a store. In order to create this simulation, you must model both the passage of time and the flow of
customers through the line. You can model time using a loop in which each pass corresponds to a
set time interval—1 minute, for example. You can model the flow of customers using a queue in
which each data item corresponds to a customer in the line.

In order to complete the simulation, you need to know the rate at w hich customers join the
line, as well as the rate at which they are served and leave the line. Suppose the check-out line has
the following properties:

• One customer is served and leaves the line every minute (assuming there is at least one
customer waiting to be served during that minute).

• Between zero and two customers join the line every minute, where there is a 50% chance that
no customers arrive, a 25% chance that one customer arrives, and a 25% chance that two
customers arrive.

You can simulate the flow of customers through the line during a time period n minutes long
using the following algorithm.

Initialize the queue to empty.

for (minute = 0 ; minute < n ; ++minute)

{

If the queue is not empty, then remove the customer at the front of the queue.

Compute a random number k between 0 and 3.

If k is 1, then add one customer to the line. If k is 2, then add two customers

to the line. Otherwise (if k is 0 or 3), do not add any customers to the line.

}

Calling the rand() function is a simple way to generate pseudo-random numbers. It should be
available through the <cstdlib> function set. Generating random numbers does vary from
platform to platform because of compiler and operating system differences. You may need to get
help from your lab instructor on how to generate random numbers in your particular context.

Step 1: Using the program shell given in the file storesim.cs as a basis, create a program that uses
the Queue ADT to implement the model described in the preceding paragraphs. Your
program should update the following information during each simulated minute; that is,
during each pass through the loop:

• The total number of customers served

• The combined length of time these customers spent waiting in line

• The maximum length of time any of these customers spent waiting in line

To compute how long a customer waited to be served, you need to store the
“minute” that the customer was added to the queue as part of the queue data item
corresponding to that customer.

Step 2: Use your program to simulate the flow of customers through the line and
complete the following table. Note that the average wait is the combined
waiting time divided by the total number of customers served.

Total Number of
Time (minutes) Customers Served Average Wait Longest Wait

30
60
120
480

Queue ADT | 129

Laboratory 6: In-lab Exercise 2

130 | Laboratory 6

Name __ Date _______________________

Section ___

A deque (or double-ended queue) is a linear data structure that allows data items to be inserted
and removed at both ends. Adding the operations described below will transform your Queue ADT
into a Deque ADT.

void putFront (const DT &newDataItem) throw (logic_error)

Requirements:
Queue is not full.

Results:
Inserts newDataItem at the front of a queue. The order of the preexisting data items is left
unchanged.

DT getRear () throw (logic_error)

Requirements:
Queue is not empty.

Results:
Removes the most recently added (rear) data item from a queue and returns it. The remainder of
the queue is left unchanged.

Step 1: Implement these operations using the array representation of a queue and add them to
the file queuearr.cpp. Prototypes for these operations are included in the declaration of
the Queue class in the file queuearr.h.

Step 2: Activate the ‘>’ (put in front) and ‘=’ (get from rear) commands in the test program
test6.cpp by removing the comment delimiter (and the character ‘>’ or ‘=’) from the lines
that begin with “//>” and “//=”.

Step 3: Complete the following test plan by adding test cases in which you

• Insert a data item at the front of a newly emptied queue

• Remove a data item from the rear of a queue containing only one data item

• “Go around the end” of the array using each of these operations

• Mix putFront and getRear with enqueue and dequeue

Step 4: Execute your test plan. If you discover mistakes in your implementation of these
operations, correct them and execute the test plan again.

Test Plan for the putFront and getRear operations
Test Case Commands Expected Result Checked

Series of calls to putFront >a >b >c >d d c b a

Series of calls to getRear = = = d

More calls to putFront >e >f f e d

More calls to getRear = = f

Note: The front data item is shown in bold.

Queue ADT | 131

Laboratory 6: In-lab Exercise 3

132 | Laboratory 6

Name __ Date _______________________

Section ___

When a queue is used as part of a model or simulation, the modeler is often very interested in how
many data items are on the queue at various points in time. This statistic is produced by the
following operation.

int getLength () const

Requirements:
None

Results:
Returns the number of data items in a queue.

Step 1: Create an implementation of this operation using the array representation of a queue and
add it to the file queuearr.cpp. A prototype for this operation is included in the
declaration of the Queue class in the file queuearr.h.

Step 2: Activate the ‘#’ (length) command in the test program test6.cpp by removing the
comment delimiter (and the character ‘#’) from the lines that begin with “//#”.

Step 3: Complete the following test plan by adding test cases in which you check the length of
empty queues and queues that “go around the end” of the array.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the length
operation, correct them and execute the test plan again.

Test Plan for the length Operation
Test Case Commands Expected Result Checked

Series of enqueues +a +b +c +d a b c d

Length # 4

Series of dequeues - - - d

Length # 1

More enqueues +e +f d e f

Length # 3

Note: The front data item is shown in bold.

Laboratory 6: Postlab Exercise 1

Queue ADT | 133

Name __ Date _______________________

Section ___

Part A
Given the following memory requirements and a queue containing one hundred integers, compare
the amount of memory used by your array representation of the queue with the amount of
memory used by your singly linked list representation. Assume that the array representation allows
a queue to contain a maximum of one hundred data items.

Integer 2 bytes

Address (pointer) 4 bytes

Note: Integer and pointer memory requirements vary depending on the operating system and
compiler. Integers and addresses range in size from 1 to 8 bytes, or larger. The values above
represent a specific platform and were chosen for simplicity of calculation.

Part B
Suppose that you have ten queues of integers. Of these ten queues, four are 50% full, and the
remaining six are 10% full. Compare the amount of memory used by your array representation of
these queues with the amount of memory used by your singly linked list representation. Assume
that the array representation allows a queue to contain a maximum of one hundred data items.

134 | Laboratory 6

Laboratory 6: Postlab Exercise 2

Queue ADT | 135

Name __ Date _______________________

Section ___

In In-lab Exercise 1, you used a queue to simulate the flow of customers through a line. Describe
another application where you might use the Queue ADT. What type of information does your
application store in each queue data item?

In this laboratory you will:

Implement the List ADT using a singly linked list

Create a program that displays a slide show

Examine how a fresh perspective on insertion and
deletion can produce more efficient linked list
implementations of these operations

Analyze the efficiency of your singly linked list
implementation of the List ADT

Singly Linked List
Implementation of the
List ADT

O
bjectives

Overview

In Laboratory 3 you created an implementation of the List ADT using an array to store
the list data items. Although this approach is intuitive, it is not terribly efficient either
in terms of memory usage or time. It wastes memory by allocating an array that is
large enough to store what you estimate to be the maximum number of data items a
list will ever hold. In most cases, the list is rarely this large and the extra memory
simply goes unused. In addition, the insertion and deletion operations require shifting
data items back and forth within the array, a very time-consuming task.

In this laboratory, you implement the List ADT using a singly linked list. This
implementation allocates memory data item by data item as data items are added to
the list. Equally important, a linked list can be reconfigured following an insertion or
deletion simply by changing one or two links.

138 | Laboratory 7

List ADT

Data Items
The data items in a list are of generic type DT.

Structure
The data items form a linear structure in which list data items follow one after the
other, from the beginning of the list to its end. The ordering of the data items is
determined by when and where each data item is inserted into the list and is not a
function of the data contained in the list data items. At any point in time, one data
item in any nonempty list is marked using the list’s cursor. You travel through the list
using operations that change the position of the cursor.

Operations

List (int ignored = 0)

Requirements:
None

Results:
Constructor. Creates an empty list. The argument is provided for call compatibility with
the array implementation and is ignored.

~List ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a list.

void insert (const DT &newDataItem) throw (bad_alloc)

Requirements:
List is not full.

Results:
Inserts newDataItem into a list. If the list is not empty, then inserts newDataItem
after the cursor. Otherwise, inserts newDataItem as the first (and only) data item in
the list. In either case, moves the cursor to newDataItem.

Singly Linked List Implementation of the List ADT | 139

void remove () throw (logic_error)

Requirements:
List is not empty.

Results:
Removes the data item marked by the cursor from a list. If the resulting list is not
empty, then moves the cursor to the data item that followed the deleted data item. If
the deleted data item was at the end of the list, then moves the cursor to the beginning
of the list.

void replace (const DT &newDataItem) throw (logic_error)

Requirements:
List is not empty.

Results:
Replaces the data item marked by the cursor with newDataItem. The cursor remains at
newDataItem.

void clear ()

Requirements:
None

Results:
Removes all the data items in a list.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a list is empty. Otherwise, returns false.

bool isFull () const

Requirements:
None

Results:
Returns true if a list is full. Otherwise, returns false.

void gotoBeginning () throw (logic_error)

Requirements:
List is not empty.

Results:
Moves the cursor to the beginning of the list.

140 | Laboratory 7

void gotoEnd () throw (logic_error)

Requirements:
List is not empty.

Results:
Moves the cursor to the end of the list.

bool gotoNext () throw (logic_error)

Requirements:
List is not empty.

Results:
If the cursor is not at the end of a list, then moves the cursor to mark the next data
item in the list and returns true. Otherwise, returns false.

bool gotoPrior () throw (logic_error)

Requirements:
List is not empty.

Results:
If the cursor is not at the beginning of a list, then moves the cursor to mark the
preceding data item in the list and returns true. Otherwise, returns false.

DT getCursor () const throw (logic_error)

Requirements:
List is not empty.

Results:
Returns a copy of the data item marked by the cursor.

void showStructure () const

Requirements:
None

Results:
Outputs the data items in a list. If the list is empty, outputs “Empty list”. Note that this
operation is intended for testing/debugging purposes only. It supports only list data
items that are one of C++’s predefined data types (int, char, and so forth).

Singly Linked List Implementation of the List ADT | 141

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 7: Cover Sheet

Singly Linked List Implementation of the List ADT | 143

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 7: Prelab Exercise

Singly Linked List Implementation of the List ADT | 145

Name __ Date _______________________

Section ___

Your linked list implementation of the List ADT uses a pair of classes, ListNode and List, to
represent individual nodes and the overall list structure, respectively. If you are unfamiliar with
this approach to linked lists, read the discussion in Laboratory 5.

Step 1: Implement the operations in the List ADT using a singly linked list. Each node in the
linked list should contain a list data item (dataItem) and a pointer to the node
containing the next data item in the list (next). Your implementation also should
maintain pointers to the node at the beginning of the list (head) and the node containing
the data item marked by the cursor (cursor). Base your implementation on the following
declarations from the file listlnk.h. An implementation of the showStructure operation
is given in the file show7.cpp.

template < class DT > // Forward declaration of the List class
class List;

template < class DT >
class ListNode // Facilitator class for the List class
{
private:

// Constructor
ListNode (const DT &nodeData, ListNode *nextPtr);

// Data members
DT dataItem; // List data item
ListNode *next; // Pointer to the next list node

friend class List<DT>;
};

//––––––––––––––––––––––—

template < class DT >
class List
{
public:

// Constructor
List (int ignored = 0);

// Destructor
~List ();

// List manipulation operations
void insert (const DT &newData) throw (bad_alloc); // Insert after cursor

void remove () throw (logic_error); // Remove data item
void replace (const DT &newData) throw (logic_error); // Replace data item
void clear (); // Clear list

// List status operations
bool isEmpty () const; // List is empty
bool isFull () const; // List is full

// List iteration operations
void gotoBeginning () throw (logic_error); // Go to beginning
void gotoEnd () throw (logic_error); // Go to end
bool gotoNext () throw (logic_error); // Go to next data

// item
bool gotoPrior () throw (logic_error); // Go to prior item

DT getCursor () const throw (logic_error); // Return item

// Output the list structure — used in testing/debugging
void showStructure () const;

private:

// Data members
ListNode<DT> *head, // Pointer to the beginning of the list

*cursor; // Cursor pointer
};

Step 2: Save your implementation of the List ADT in the file listlnk.cpp. Be sure to document
your code.

146 | Laboratory 7

Laboratory 7: Bridge Exercise

Singly Linked List Implementation of the List ADT | 147

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program in the file test7.cpp allows you to interactively test your implementation of
the List ADT using the following commands.

Command Action

+x Insert data item x after the cursor.
- Remove the data item marked by the cursor.
=x Replace the data item marked by the cursor with data item x.
@ Display the data item marked by the cursor.
N Go to the next data item.
P Go to the prior data item.
< Go to the beginning of the list.
> Go to the end of the list.
E Report whether the list is empty.
F Report whether the list is full.
C Clear the list.
Q Quit the test program.

Step 1: Compile and link the test program. Note that compiling this program will compile your
linked list implementation of the List ADT (in the file listlnk.cpp) to produce an
implementation for a list of characters.

Step 2: Complete the following test plan by adding test cases that check whether your
implementation of the List ADT correctly determines whether a list is empty and correctly
inserts data items into a newly emptied list.

Step 3: Execute your test plan. If you discover mistakes in your implementation of the List ADT,
correct them and execute your test plan again.

Test Plan for the Operations in the List ADT
Test Case Commands Expected Result Checked

Insert at end +a +b +c +d a b c d

Travel from beginning < N N a b c d

Travel from end > P P a b c d

Delete middle data item – a c d

Insert in middle +e +f +f a c e f f d

Remove last data item >- a c e f f

Remove first data item <- c e f f

Display data item @ Returns c

Replace data item =g g e f f

Clear the list C Empty list

Note: The data item marked by the cursor is shown in bold.

Step 4: Change the list in the test program from a list of characters to a list of
integers by replacing the declarations for testList and testDataItem with

List<int> testList(8); // Test list
int testDataItem; // List data item

Step 5: Recompile and relink the test program. Note that recompiling this program
will compile your implementation of the List ADT to produce an
implementation for a list of integers.

Step 6: Replace the character data (‘a’-‘g’) in your test plan with integer values.

Step 7: Execute your revised test plan using the revised test program. If you discover
mistakes in your implementation of the List ADT, correct them and execute
your revised test plan again.

148 | Laboratory 7

Laboratory 7: In-lab Exercise 1

Singly Linked List Implementation of the List ADT | 149

Name __ Date _______________________

Section ___

List data items need not be one of C++’s built-in types. The following declaration, for example,

List<Slide> slideShow;

represents a slide show presentation as a list of slides where each slide is an object in the Slide
class outlined below.

const int slideHeight = 10, // Slide dimensions
slideWidth = 36;

class Slide
{
public:

void read (ifstream &inFile); // Read slide from file
void display () const; // Display slide and pause

private:

char image [slideHeight] [slideWidth]; // Slide image
int pause; // Seconds to pause after

// displaying slide
};

Step 1: Using the program shell given in the file slideshw.cs as a basis, create a program that
reads a list of slides from a file and displays the resulting slide show from beginning to
end. Your program should pause for the specified length of time after displaying each
slide. It then should clear the screen (by scrolling, if necessary) before displaying the next
slide.

Assume that the file containing the slide show consists of repetitions of the following
slide descriptor:

Time
Row 1
Row 2
...
Row 10

where Time is the length of time to pause after displaying a slide (in seconds) and Rows
1–10 form a slide image (each row is thirty-six characters long).

Note that list data items of type Slide should not cause problems with the routines in
your implementation of the List ADT with the exception of the showStructure operation.
Inactivate this operation by commenting out the showStructure() function.

Step 2: Test your program using the slide show in the file slides.dat.

Test Plan for the Slide Show Program
Test Case Checked

Slide show in the file slides.dat

150 | Laboratory 7

Laboratory 7: In-lab Exercise 2

Singly Linked List Implementation of the List ADT | 151

Name __ Date _______________________

Section ___

In many applications, the order of the data items in a list changes over time. Not only are new
data items added and existing ones removed, but data items are repositioned within the list. The
following List ADT operation moves a data item to the beginning of a list.

void moveToBeginning () throw (logic_error)

Requirements:
List is not empty.

Results:
Removes the data item marked by the cursor from a list and reinserts the data item at the
beginning of the list. Moves the cursor to the beginning of the list.

Step 1: Implement this operation and add it to the file listlnk.cpp. A prototype for this operation
is included in the declaration of the List class in the file listlnk.h.

Step 2: Activate the ‘M’ (move) command in the test program in the file test7.cpp by removing
the comment delimiter (and the character ‘M’) from the lines beginning with “//M”.

Step 3: Complete the following test plan by adding test cases that check whether your
implementation of the moveToBeginning operation correctly processes attempts to move
the first data item in a list and also moves within a single-data item list.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the
moveToBeginning operation, correct them and execute your test plan again.

Test Plan for the moveToBeginning Operation
Test Case Commands Expected Result Checked

Set up list +a +b +c +d a b c d

Move last data item M d a b c

Move second data item N M a d b c

Move third data item N N M b a d c

Note: The data item marked by the cursor is shown in bold.

152 | Laboratory 7

Laboratory 7: In-lab Exercise 3

Singly Linked List Implementation of the List ADT | 153

Name __ Date _______________________

Section ___

Sometimes a more effective approach to a problem can be found by looking at the problem a little
differently. Consider the following List ADT operation:

void insertBefore (const DT &newDataItem) throw (logic_error)

Requirements:
List is not full.

Results:
Inserts newDataItem into a list. If the list is not empty, then inserts newDataItem immediately
before the cursor. Otherwise, inserts newDataItem as the first (and only) data item in the list. In
either case, moves the cursor to newDataItem.

You can implement this operation using a singly linked list in two very different ways. The
obvious approach is to iterate through the list from its beginning until you reach the node
immediately before the cursor and then to insert newDataItem between this node and the cursor.
A more efficient approach is to copy the data item pointed to by the cursor into a new node, to
insert this node after the cursor, and to place newDataItem in the node pointed to by the cursor.
This approach is more efficient because it does not require you to iterate through the list searching
for the data item immediately before the cursor.

Step 1: Implement the insertBefore operation using the second (more efficient) approach and
add it to the file listlnk.cpp. A prototype for this operation is included in the declaration
of the List class in the file listlnk.h.

Step 2: Activate the ‘#’ (insert before) command in the test program in the file test7.cpp by
removing the comment delimiter (and the character ‘#’) from the lines beginning with
“//#”.

Step 3: Complete the following test plan by adding test cases that check whether your
implementation of the insertBefore operation correctly handles insertions into single
data item lists and empty lists.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the
insertBefore operation, correct them and execute your test plan again.

Test Plan for the insertBefore Operation
Test Case Commands Expected Result Checked

Set up list +a +b +c a b c

Insert in middle #d a b d c

Cascade inserts #e a b e d c

Insert after head P #f a f b e d c

Insert as head P #g g a f b e c

Note: The data item marked by the cursor is shown in bold.

154 | Laboratory 7

Laboratory 7: Postlab Exercise 1

Singly Linked List Implementation of the List ADT | 155

Name __ Date _______________________

Section ___

Given a list containing N data items, develop worst-case, order-of-magnitude estimates of the
execution time of the following List ADT operations, assuming they are implemented using a
linked list. Briefly explain your reasoning behind each estimate.

insert O()

Explanation:

remove O()

Explanation:

gotoNext O()

Explanation:

gotoPrior O()

Explanation:

156 | Laboratory 7

Laboratory 7: Postlab Exercise 2

Singly Linked List Implementation of the List ADT | 157

Name __ Date _______________________

Section ___

Part A
In-lab Exercise 3 introduces a pair of approaches for implementing an insertBefore operation.
One approach is straightforward, whereas the other is somewhat less obvious but more efficient.
Describe how you might apply the latter approach to the remove operation. Use a diagram to
illustrate your answer.

Part B
The resulting implementation of the remove operation has a worst-case, order of magnitude
performance estimate of O(N). Does this estimate accurately reflect the performance of this
implementation? Explain why or why not.

158 | Laboratory 7

In this laboratory you will:

Analyze the limitations of the default copy
constructor, assignment operator, and equality
operator

Develop and implement an improved copy
constructor, assignment operator, and equality
operator for the singly linked implementation of the
List ADT

Learn about and implement a convert constructor

Learn how to use the object’s pointer this to
improve function behavior

Copying and
Comparing ADTs

O
bjectives

Overview

Whenever a variable is passed to a function using call by value, the compiler makes a
copy of the variable. The function then manipulates this copy rather than the original
argument. Once the function terminates, the copy is deleted.

How does the compiler know how to construct a copy of a particular argument?
For C++’s predefined types, this task is straightforward. The compiler simply makes a
bitwise (bit-by-bit) copy of the argument. Unfortunately, this approach does not work
well with instances of classes such as the singly linked list that contain dynamically
allocated data. Consider what happens when the call

dummy(testList);

is made to the following function:

void dummy (List<DT> valueList);

A bitwise copy of list testList to list valueList copies pointers testList.head
and testList.cursor to pointers valueList.head and valueList.cursor. The
linked list of data items pointed to by testList.head is not copied and there are now
two pointers to the same linked list of data items. As a result, changes to valueList
also change testList, clearly violating the constraints of call by value. In addition,
when the function terminates, the List class destructor is called to delete the copy
(valueList). As it deletes valueList’s linked list of data items, the destructor also is
deleting testList’s data.

Fortunately, C++ provides us with a method for addressing this problem. We can
specify exactly how a copy is to be created by including a copy constructor in our List
class. The compiler then uses our copy constructor in place of its default (bitwise) copy
constructor.

Classes that have problems because of the default copying behavior also encounter
similar problems when assigning one object to another. This is solved in C++ by
overloading the assignment operator (‘=’). A number of other operators, for example,
the comparison operator (‘==’), also do not function as expected because they do a
bitwise comparison of the pointers instead of comparing the data that the pointers
reference.

These problems arise because of a failure to distinguish between identical data and
equivalent data. To help put this into perspective, imagine that you are at a pizza
restaurant. The waiter comes to your table and asks if you are ready to order. You are
in a hurry, so you glance around and notice that the pizza at the next table looks
good. You tell the waiter, “I’ll have what they’re having.” Imagine the surprise if the
waiter were to walk over to the next table, pick up their pizza, and put it down on
your table for you to eat. You had probably meant that you wanted to have an
equivalent pizza, not the very same identical pizza.

Although this is not a perfect analogy, when C++ needs to make a copy of a data
structure, it does what the waiter did and tries to give you an exact copy. By default,
the C++ compiler works with a shallow version of the data structure in which the
values of the pointers are treated as the real data to be copied or compared—a copy is
identical. Instead, we need to work with a deep version of the data structure—the
values of the pointers must be dereferenced to find the actual data structure items that
need to be copied or compared. Initialized objects should end up containing equivalent

160 | Laboratory 8

data. We can ensure correct program behavior by providing copy constructors and
overloading the necessary operators. Note that if you do not provide a copy
constructor and overload the assignment operator, your program is likely to fail with
strange and hard-to-diagnose errors involving memory references. The rule of thumb
for deciding whether or not you need to provide a copy constructor and overloaded
assignment operator is as follows:

If the class contains pointers and performs dynamic memory allocation, you should—at a
minimum—implement the copy constructor and overload the assignment operator.

It is possible to learn all the situations under which the problems can arise—such as
passing a list object as a value parameter—and try to avoid those situations, but it is
very easy to make mistakes. Do not take shortcuts. Failure to implement the copy
constructor and overloaded assignment operator will come back to haunt you.

The prototype for the copy constructor for an arbitrary class, C, is as follows:

C (const C &value);

The object value is what the constructor must use to initialize the local data. Although
the data in value is probably private, this is not a problem for the constructor code
because objects of a given class are permitted to access all parts of another object of
the same class.

The prototype for the overloaded assignment operator is as follows:

void operator = (const C &value);

The function behavior here will be almost identical to that of the copy constructor. The
differences stem from the fact that with the copy constructor we are initializing a
new—not previously initialized—object, whereas with the overloaded assignment
operator we are reinitializing an already initialized object. Care must be taken during
reinitialization to avoid causing memory leaks and other problems. Note that there is
another permissible version of the prototype for the overloaded assignment operator
that does not have a void return type. It will be discussed in Postlab Exercise 1.

Copy constructors are activated in the following three contexts:

• Objects passed by value to a function. The compiler activates the copy constructor
to initialize the function’s local temporary copy of the object.

• Object definition with copy initialization. For example, a new list is defined and is
to be immediately initialized to be equivalent to another list.

List<char> list2 (list1);

There are object definition situations that activate a copy constructor even though
it doesn’t look like object definition with copy initialization. For instance, the
statement

List<char> list2 = list1;

activates the copy constructor, not the assignment operation. For reasons partially
covered in In-lab Exercise 3, the assignment operation is not used when a variable
is initialized in its definition.

• Objects returned by value from a function. Whenever a class object is returned by
value from a function, the compiler calls the copy constructor to initialize the
receiving storage.

list2 = buildList();

Copying and Comparing ADTs | 161

where the prototype of buildList() is something like the following:

List<char> buildList();

Note: The preceding section is based in part on material from Object-Oriented
Programming in C++, Johnsonbaugh and Kalin, 1995, Prentice Hall. This is an
extremely useful book for developing an in-depth knowledge of C++.

162 | Laboratory 8

Enhanced List ADT

Data Items
The data items in a list are of generic type DT.

Structure
The Enhanced List ADT is based on the standard singly linked list presented in Lab 7.

Operations
List (const List<DT> &valueList) throw (bad_alloc)

Requirements:
None

Results:
Copy constructor. Creates a copy of valueList. This constructor automatically is
invoked whenever a list is passed to a function using call by value, a function returns
a list, or a list is initialized using another list.

void operator = (const List<DT> &rightList) throw (bad_alloc)

Requirements:
None

Results:
Assigns (copies) the contents of rightList to a list.

Copying and Comparing ADTs | 163

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 8: Cover Sheet

Copying and Comparing ADTs | 165

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 8: Prelab Exercise

Copying and Comparing ADTs | 167

Name __ Date _______________________

Section ___

In this laboratory you will create a copy constructor and overload the assignment operator for the
singly linked list implementation of the list ADT.

Step 1: Test the (default) copy constructor and assignment operator for your singly linked
implementation of the List ADT (Lab 7) using a copy of your listlnk.cpp that you should
save in the file listlnk2.cpp. Also use the provided Lab 8 listlnk2.h and the test program
given in the file test8.cpp. What happens? Why?

Step 2: Implement the List ADT copy constructor and assignment operator using the singly linked
implementation of the List ADT (Lab 7) that you have stored in listlnk2.cpp. The
following declaration for the singly linked list class is given in the file listlnk2.h.

template < class DT > // Forward declaration of the List class
class List;

template < class DT >
class ListNode // Facilitator class for the List class
{
private:

// Constructor
ListNode (const DT &nodeData, ListNode *nextPtr);

// Data members
DT dataItem; // List data item
ListNode *next; // Pointer to the next list node

friend class List<DT>;
};

//--

template < class DT >
class List
{
public:

// Constructors
List (int ignored = 0);
List (const List<DT> &srcList) // Copy constructor

throw (bad_alloc);

// Destructor
~List ();

void operator= (const List<DT> &srcList)
throw (bad_alloc);

// List manipulation operations
void insert (const DT &newData) // Insert after cursor

throw (bad_alloc);
void remove () // Remove data item

throw (logic_error);
void replace (const DT &newData) // Replace data item

throw (logic_error);
void clear (); // Clear list

// List status operations
bool isEmpty () const; // List is empty
bool isFull () const; // List is full

// List iteration operations
void gotoBeginning () // Go to beginning

throw (logic_error);
void gotoEnd () // Go to end

throw (logic_error);
bool gotoNext ()

throw (logic_error) // Go to next data item
bool gotoPrior ()

throw (logic_error); // Go to prior item
DT getCursor () const // Return item

throw (logic_error);

// Output the list structure — used in testing/debugging
void showStructure () const;

private:

// Data members
ListNode<DT> *head, // Pointer to the beginning of the list

*cursor; // Cursor pointer
};

168 | Laboratory 8

Laboratory 8: Bridge Exercise

Copying and Comparing ADTs | 169

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program in the file test8.cpp allows you to interactively test your implementation of
the Enhanced List ADT using the following commands.

Command Action

+x Insert data item x after the cursor.
N Go to the next data item.
P Go to the prior data item.
C Test the copy constructor.
= Test the assignment operator.
! Double check the assignment operator.
Q Quit the test program.

Step 1: Prepare a test plan for your implementation of the List ADT. Be sure to test that your
copy constructor and assignment operator work with empty lists. A test plan form
follows.

Step 2: Implement your new functions in the file listlnk2.cpp.

Step 3: Execute the test plan. If you discover mistakes in your implementation of the copy
constructor and assignment operator, correct them and execute the test plan again.

Test Plan for the New Operations in the Enhanced List ADT
Test Case Commands Expected Result Checked

170 | Laboratory 8

Laboratory 8: In-lab Exercise 1

Copying and Comparing ADTs | 171

Name __ Date _______________________

Section ___

You are now familiar with the copy constructor and have the knowledge to decide when there is a
need to implement your own copy constructor. C++ also permits the definition of other
constructors that, although nonessential, can be extremely useful.

A convert constructor allows you to initialize an object by passing an object of a different
type. You have probably already used this with the C++ string class as given in the following
example,

string lastName(“Smith”);

the C-string “Smith”—of a different type than string—is used to initialize the string object.
Convert constructors can be used with a wide range of initialization types. To give you

experience implementing a convert constructor, we will ask you to create one for the singly linked
implementation of the List ADT that will accept a Logbook as the initializer. For the purposes of
this exercise, assume the list contains integers.

List (const Logbook &log)

Requirements:
Log is a valid logbook.

Results:
Constructor. Creates a list representation of the logbook containing appropriate entries for the
logbook month, year, number of days in the month, and each of the days in the month.

Step 1: Copy logbook.h and logbook.cpp to your Lab 8 directory. Modify the listlnk2.h file to
include logbook.h and insert the convert constructor prototype underneath the other
constructor declarations in the List class declaration.

Step 2: Implement the convert constructor described above and add it to the file listlnk2.cpp.

Step 3: Copy the file test-convert.cs to test-convert.cpp. The first half of the program is provided
from the Lab 1 prelab and allows the user to enter data into a logbook. The second half of
the program starts with the following lines:

// Create a list to represent the logbook and display
// the log using the singly-linked list.
List<int> logList(testLog);

cout << endl
<< “Now printing same logbook from linked list” << endl;

// Insert your code below. It should include the month, year,
// number of days in the month, and a printout of the logbook
// data from logList identical to the logbook listings above.
// All the necessary data from testLog should now be in
// logList—do NOT use testLog from here on.

LogList should now contain all the information that testLog contains. Use only
logList to implement the missing part of the program. Your added code should
produce the following output.

Now printing same logbook from linked list

Logbook created for Month : 8, Year : 2002
days in month : 31

1 1 2 2 3 3 4 4 5 0
6 0 7 0 8 0 9 0 10 0
11 0 12 0 13 0 14 0 15 0
16 0 17 0 18 0 19 0 20 0
21 0 22 0 23 0 24 0 25 0
26 0 27 0 28 0 29 0 30 30
31 31

Step 4: Complete the test plan for the convert constructor and the code you added to
print out the logbook data.

Step 5: Execute the test plan. If you discover mistakes in your implementation of the
convert constructor or your logbook data display, correct them and execute
the test plan again.

Test Plan for the Convert Constructor and Test Program
Test Case Logbook Month # Days in Month Checked

Simple month 1 2003 31

Month in the past 7 1969

Month in the future 12 2011

February (nonleap year) 2 2003

February (leap year) 2 2004

172 | Laboratory 8

Laboratory 8: In-lab Exercise 2

Copying and Comparing ADTs | 173

Name __ Date _______________________

Section ___

We have examined how the behavior of the default C++ copy constructor and assignment operator
can cause run-time errors and cause the program to halt in mid-execution. Less catastrophic—but
still unacceptable—behavior is exhibited by a number of the other default C++ operators whenever
the deep version of the data structure must be used instead of the shallow version. For instance,
the comparison operator (‘==’) gives invalid results when comparing two equivalent but distinct
singly linked lists because it compares the values of the head and cursor pointers instead of
comparing the data items in the lists.

bool operator == (const List &rightList)

Requirements:
None

Results:
Compares the deep structure values of a list to that of rightList. If they are the same—that is,
equivalent values—then returns true. Otherwise, returns false.

Step 1: Implement this operation and add it to the file listlnk2.cpp. A prototype for this operation
is included in the declaration of the List class in the file listlnk2.h.

Step 2: Activate the ‘?’ (equal?) command in the test program in the file test8.cpp by removing
the comment delimiter (and the character ‘?’) from the lines that begin with ‘//?’.

Step 3: Prepare a test plan that covers various lists, including empty lists and lists containing a
single data item. Note that you can set the value of the second list in the test program by
using the ‘=’ command. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the reverse
operation, correct them and execute your test plan again.

Test Plan for Test ? (Equality Comparison Operation)
Test Case Commands Expected Result Checked

174 | Laboratory 8

Laboratory 8: In-lab Exercise 3

Copying and Comparing ADTs | 175

Name __ Date _______________________

Section ___

In complex programs with pointers, it is possible to have multiple references to the same object.
Although probably not intended, it is possible to accidentally write a C++ statement assigning an
object to itself. A statement such as

list1 = list1;

is not likely to be written by a programmer and would most likely be removed by an optimizing
compiler as a useless statement. However, it might be possible to have a C++ statement like

List<int> *listPtr;
listPtr = &list1;
// Intermediate statements
. . .
*listPtr = list1;

that would sneak past the optimizer. This code is assigning the list to itself.
The main problem here is not that the C++ compiler might fail to remove an unneeded

statement, but something much more serious.

Step 1: Activate the ‘S’ (test self-assignment) command in the test program in the file test8.cpp
by removing the comment delimiter (and the character ‘S’) from the lines beginning with
“//S”.

Step 2: Compile test8.cpp and run the executable. Place some data into the list and then choose
the ‘S’ command. What happens? Why did it happen?

The copy constructor is run to initialize a new object and consequently there is no need to
clear out previous data. The problem that occurs with the assignment operation is that the list is
already initialized and may contain data. Before the list can be reinitialized, any existing data
must be removed properly by returning the list nodes to the memory manager. The next step is to
have the list initialize itself to itself, but it just finished deallocating all of its nodes, leaving
nothing to copy.

The solution is to verify that the object is not copying from itself. This can be easily achieved
by using the pointer named this that the C++ compiler places in each object and initializes to the
address of the object. Because each object has a unique memory address, an object can verify
whether or not it is the same as another object by comparing the contents of this to the address
of the other object.

Step 3: Complete the following test plan by adding test cases that check whether your
implementation of the assignment operation correctly handles the assignment to self
problem.

Step 4: Modify your operator=() function in listlnk2.cpp so that no harm is done if
the list is passed itself as the initialization model.

Step 5: Execute your test plan. If you discover mistakes in your implementation of
these operations, correct them and execute your test plan again.

Test Plan for the Corrected Assignment Operation
Test Case Commands Expected Result Checked

176 | Laboratory 8

Laboratory 8: Postlab Exercise 1

Copying and Comparing ADTs | 177

Name __ Date _______________________

Section ___

There are two possible prototypes for the overloaded assignment operator. The one used in the
prelab is

void operator = (const List<DT> &rightList)

Given three list objects—list1, list2, and list3—you set list2 and list3 to the same value as
list1 as follows:

list2 = list1;
list3 = list1;

The other prototype for the assignment operator changes the return type from void to
List<DT>& as follows:

List<DT>& operator = (const List<DT> &rightList)

The List<DT>& is a reference to the list that can be used in further expressions such as multiple
assignments on the same line. For instance, this permits

list3 = list2 = list1;

and

if ((list2 = list1) == list3)

The code for the two versions of the function are identical except for the last line on the second
version—the one with return type List<DT>&. As mentioned in In-lab 3, every object has a
compiler-generated pointer named this that contains the object’s address. To return a reference to
the object, the second function adds the line

return *this;

Which version of the assignment operator function is preferable? Explain your reasoning.

Laboratory 8: Postlab Exercise 2

Copying and Comparing ADTs | 179

Name __ Date _______________________

Section ___

Consider all the ADTs covered so far in this lab book—Logbook (1), Point List (2), Array
implementation of the List (3), Ordered List (4), Stack (5), Queue (6), and Singly linked
Implementation of the List (7). Which of them need to have a copy constructor and an overloaded
assignment operator? Explain your reasoning.

In this laboratory you will:

Implement the List ADT using a doubly linked list

Create an anagram puzzle program

Reverse a linked list

Analyze the efficiency of your doubly linked list
implementation of the List ADT

Doubly Linked List
Implementation of the
List ADT

O
bjectives

Overview

The singly linked list implementation of the List ADT that you created in Laboratory 7
is quite efficient when it comes to insertion and movement from one node to the next.
It is not nearly so efficient, however, when it comes to deletion and movement
backward through the list. In this laboratory, you create an implementation of the List
ADT using a circular, doubly linked list. This implementation performs most of the List
ADT operations in constant time.

182 | Laboratory 9

List ADT

Data Items
The data items in a list are of generic type DT.

Structure
The data items form a linear structure in which list data items follow one after the
other, from the beginning of the list to its end. The ordering of the data items is
determined by when and where each data item is inserted into the list and is not a
function of the data contained in the list data items. At any point in time, one data
item in any nonempty list is marked using the list’s cursor. You travel through the list
using operations that change the position of the cursor.

Operations

List (int ignored = 0)

Requirements:
None

Results:
Constructor. Creates an empty list. The argument is provided for call compatibility with
the array implementation and is ignored.

~List ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a list.

void insert (const DT &newDataItem) throw (bad_alloc)

Requirements:
List is not full.

Results:
Inserts newDataItem into a list. If the list is not empty, then inserts newDataItem
after the cursor. Otherwise, inserts newDataItem as the first (and only) data item in
the list. In either case, moves the cursor to newDataItem.

void remove () throw (logic_error)

Requirements:
List is not empty.

Results:
Removes the data item marked by the cursor from a list. If the resulting list is not
empty, then moves the cursor to the data item that followed the deleted data item. If
the deleted data item was at the end of the list, then moves the cursor to the beginning
of the list.

Doubly Linked List Implementation of the List ADT | 183

void replace (const DT &newDataItem) throw (logic_error)

Requirements:
List is not empty.

Results:
Replaces the dataItem marked by the cursor with newDataItem. The cursor remains
at newDataItem.

void clear ()

Requirements:
None

Results:
Removes all the data items in a list.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a list is empty. Otherwise, returns false.

bool isFull () const

Requirements:
None

Results:
Returns true if a list is full. Otherwise, returns false.

void gotoBeginning () throw (logic_error)

Requirements:
List is not empty.

Results:
Moves the cursor to the beginning of the list.

void gotoEnd () throw (logic_error)

Requirements:
List is not empty.

Results:
Moves the cursor to the end of the list.

184 | Laboratory 9

bool gotoNext () throw (logic_error)

Requirements:
List is not empty.

Results:
If the cursor is not at the end of a list, then moves the cursor to the next data item in
the list and returns true. Otherwise, returns false.

bool gotoPrior () throw (logic_error)

Requirements:
List is not empty.

Results:
If the cursor is not at the beginning of a list, then moves the cursor to the preceding
data item in the list and returns true. Otherwise, returns false.

DT getCursor () const throw (logic_error)

Requirements:
List is not empty.

Results:
Returns a copy of the data item marked by the cursor.

void showStructure () const

Requirements:
None

Results:
Outputs the data items in a list. If the list is empty, outputs “Empty list”. Note that this
operation is intended for testing/debugging purposes only. It supports only list data
items that are one of C++’s predefined data types (int, char, and so forth).

Doubly Linked List Implementation of the List ADT | 185

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 9: Cover Sheet

Doubly Linked List Implementation of the List ADT | 187

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 9: Prelab Exercise

Doubly Linked List Implementation of the List ADT | 189

Name __ Date _______________________

Section ___

Each node in a doubly linked list contains a pair of pointers. One pointer points to the node that
precedes the node (prior) and the other points to the node that follows the node (next). The
resulting ListNode class is similar to the one you used in Laboratory 7.

template < class DT >
class ListNode // Facilitator class for the List class
{
private:

// Constructor
ListNode (const DT &data,

ListNode *priorPtr, ListNode *nextPtr);

// Data members
DT dataItem; // List data item
ListNode *prior, // Pointer to the previous data item

*next; // Pointer to the next data item

friend class List<DT>;
};

In a circular, doubly linked list, the nodes at the beginning and end of the list are linked
together. The next pointer of the node at the end of the list points to the node at the beginning,
and the prior pointer of the node at the beginning points to the node at the end.

Step 1: Implement the operations in the List ADT using a circular, doubly linked list. Base your
implementation on the class declarations in the file listdbl.h. An implementation of the
showStructure operation is given in the file show9.cpp.

Step 2: Save your implementation of the List ADT in the file listdbl.cpp. Be sure to document
your code.

Laboratory 9: Bridge Exercise

190 | Laboratory 9

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program in the file test9.cpp allows you to interactively test your implementation of
the List ADT using the following commands.

Command Action

+x Insert data item x after the cursor.
- Remove the data item marked by the cursor.
=x Replace the data item marked by the cursor with data item x.
@ Display the data item marked by the cursor.
N Go to the next data item.
P Go to the prior data item.
< Go to the beginning of the list.
> Go to the end of the list.
E Report whether the list is empty.
F Report whether the list is full.
C Clear the list.
Q Quit the test program.

Step 1: Prepare a test plan for your implementation of the List ADT. Your test plan should cover
the application of each operation to data items at the beginning, middle, and end of lists
(where appropriate). A test plan form follows.

Step 2: Execute your test plan. If you discover mistakes in your implementation of the List ADT,
correct them and execute your test plan again.

Test Plan for the Operations in the List ADT
Test Case Commands Expected Result Checked

Doubly Linked List Implementation of the List ADT | 191

Laboratory 9: In-lab Exercise 1

192 | Laboratory 9

Name __ Date _______________________

Section ___

Lists can be used as data members in other classes. In this exercise, you will create an
implementation of the Anagram Puzzle ADT described below using lists of characters to store both
the solution to the puzzle and the current puzzle configuration.

Anagram Puzzle ADT

Data Items
Alphabetic characters.

Structure
The characters are arranged linearly. If rearranged properly they spell a specified English word.

Operations
AnagramPuzzle (char answ[], char init[])

Requirements:
Strings answ and init are nonempty and contain the same letters (but in a different order).

Results:
Constructor. Creates an anagram puzzle. String answ is the solution to the puzzle and string init
is the initial scrambled letter sequence.

void shiftLeft ()

Requirements:
None

Results:
Shifts the letters in a puzzle left one position. The leftmost letter is moved to the right end of the
puzzle.

void swapEnds ()

Requirements:
None

Results:
Swaps the letters at the left and right ends of a puzzle.

void display ()

Requirements:
None

Results:
Displays an anagram puzzle.

bool solved ()

Requirements:
None

Results:
Returns true if a puzzle is solved. Otherwise returns false.

The following code fragment declares a puzzle in which the word “yes” is scrambled as
“yse”. It then shows how the puzzle is unscrambled to form “yes”.

AnagramPuzzle enigma(“yes”,”yse”); // Word is “yes”, start w/ “yse”
enigma.shiftLeft(); // Changes puzzle to “sey”
enigma.swapEnds(); // Changes puzzle to “yes”

Rather than having the solution to the puzzle encoded in the program, your puzzle
program allows the user to solve the puzzle by entering commands from the keyboard.

Step 1: Complete the anagram puzzle program shell given in the file puzzle.cs by
creating an implementation of the Anagram Puzzle ADT. Base your
implementation on the following declaration.

class AnagramPuzzle
{
public:

AnagramPuzzle(char answ[], char init[]); // Construct puzzle
void shiftLeft(); // Shift letters left
void swapEnds(); // Swap end letters
void display(); // Display puzzle
bool isSolved(); // Puzzle solved

private:

// Data members
List<char> solution, // Solution to puzzle

puzzle; // Current puzzle configuration
};

Use your circular, doubly linked list implementation of the List ADT to
represent the lists of characters storing the puzzle’s solution and its current
configuration.

Step 2: Test your anagram puzzle program using the puzzles given in the following
test plan.

Doubly Linked List Implementation of the List ADT | 193

Test Plan for the Anagram Puzzle Program
Test Case Checked

Puzzle word “yes”, scrambled as “yse”

Puzzle word “right”, scrambled as “irtgh”

194 | Laboratory 9

Laboratory 9: In-lab Exercise 2

Doubly Linked List Implementation of the List ADT | 195

Name __ Date _______________________

Section ___

A list can be reversed in two ways: either you can relink the nodes in the list into a new (reversed)
order, or you can leave the node structure intact and exchange data items between pairs of nodes.
Use one of these strategies to implement the following List ADT operation.

void reverse ()

Requirements:
None

Results:
Reverses the order of the data items in a list. The cursor does not move.

Step 1: Implement this operation and add it to the file listdbl.cpp. A prototype for this operation
is included in the declaration of the List class in the file listdbl.h.

Step 2: Activate the ‘R’ (reverse) command in the test program in the file test9.cpp by removing
the comment delimiter (and the character ‘R’) from the lines that begin with “//R”.

Step 3: Prepare a test plan for the reverse operation that covers lists of various lengths, including
lists containing a single data item. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the reverse
operation, correct them and execute your test plan again.

Test Plan for the Reverse Operation
Test Case Commands Expected Result Checked

Laboratory 9: In-lab Exercise 3

196 | Laboratory 9

Name __ Date _______________________

Section ___

In many list applications you need to know the number of data items in a list and the relative
position of the cursor. Rather than computing these attributes each time they are requested, you
can store this information in a pair of data members that you update whenever you insert data
items, remove data items, or move the cursor.

Step 1: Add the following data members (both are of type int) to the List class declaration in the
file listdbl.h and save the result in the file listdbl2.h.

size: The number of data items in a list.

pos: The numeric position of the cursor, where the list data items are numbered from
beginning to end, starting with 0.

Step 2: Modify the routines in your circular, doubly linked list implementation of the List ADT so
that they update these data members whenever necessary. Save your modified
implementation in the file listdbl2.cpp.

Step 3: If you are to reference the size and pos data members within applications programs,
you must have List ADT operations that return these values. Add prototypes for the
following operations to the List class declaration in the file listdbl2.h.

int getLength () const

Requirements:
None

Results:
Returns the number of data items in a list.

int getPosition () const throw (logic_error)

Requirements:
List is not empty.

Results:
Returns the position of the cursor, where the list data items are numbered from beginning to end,
starting with 0.

Step 4: Implement these operations and add them to the file listdbl2.cpp.

Step 5: Modify the test program in the file test9.cpp so that the routines that
incorporate your changes (in listdbl2.cpp) are included in place of those you
created in the Prelab.

Step 6: Activate the ‘#’ (length and position) command by removing the comment
delimiter (and the character ‘#’) from the lines that begin with “//#”.

Step 7: Prepare a test plan for these operations that checks the length of various lists
(including the empty list) and the numeric position of data items at the
beginning, middle, and end of lists. A test plan form follows.

Step 8: Execute your test plan. If you discover mistakes in your implementation of
these operations, correct them and execute your test plan again.

Test Plan for the Length and Position Operations
Test Case Commands Expected Result Checked

Doubly Linked List Implementation of the List ADT | 197

Laboratory 9: Postlab Exercise 1

Doubly Linked List Implementation of the List ADT | 199

Name __ Date _______________________

Section ___

Part A
Given a list containing N data items, develop worst-case, order-of-magnitude estimates of the
execution time of the following List ADT operations, assuming they are implemented using a
circular, doubly linked list. Briefly explain your reasoning behind each estimate.

insert O()

Explanation:

remove O()

Explanation:

gotoPrior O()

Explanation:

gotoEnd O()

Explanation:

Part B
Would these estimates be the same for an implementation of the List ADT based on a noncircular,
doubly linked list? Explain why or why not.

200 | Laboratory 9

Laboratory 9: Postlab Exercise 2

Doubly Linked List Implementation of the List ADT | 201

Name __ Date _______________________

Section ___

Part A
Given the following arbitrarily selected—but plausible—memory requirements and a list containing
N integers, compare the amount of memory used by your singly linked list representation of the
list (Laboratory 7) with the amount of memory used by your circular, doubly linked list
representation.

Character 1 byte

Integer 2 bytes

Address (pointer) 4 bytes

Part B
Suppose the list contains N objects of class Slide (Laboratory 7, In-lab Exercise 1). Compare the
amount of memory used by your singly linked list representation of the list with the amount of
memory used by your circular, doubly linked representation.

202 | Laboratory 9

In this laboratory you will:

Examine how recursion can be used to traverse a
linked list in either direction

Use recursion to insert, delete, and move data items in
a linked list

Convert recursive routines to iterative form

Analyze why a stack is sometimes needed when
converting from recursive to iterative form

Recursion with Linked
Lists

O
bjectives

Overview

Recursive functions, or functions that call themselves, provide an elegant way of
describing and implementing the solutions to a wide range of problems, including
problems in mathematics, computer graphics, compiler design, and artificial
intelligence. Let’s begin by examining how you develop a recursive function definition,
using the factorial function as an example.

You can express the factorial of a positive integer n using the following iterative
formula:

n! = n � (n � 1) � (n � 2) � . . . � 1

Applying this formula to 4! yields the product 4 � 3 � 2 � 1. If you regroup the
terms in this product as 4 � (3 � 2 � 1) and note that 3! = 3 � 2 � 1, then you find
that 4! can be written as 4 � (3!). You can generalize this reasoning to form the
following recursive definition of factorial:

n! = n � (n � 1)!

where 0! is defined to be 1. Applying this definition to the evaluation of 4! yields the
following sequence of computations.

4! = 4 ⋅ (3!)

= 4 ⋅ (3 ⋅ (2!))

= 4 ⋅ (3 ⋅ (2 (1!)))

= 4 ⋅ (3 ⋅ (2 (1 ⋅ (0!))))

= 4 ⋅ (3 ⋅ (2 (1 ⋅ (1))))

The first four steps in this computation are recursive, with n! being evaluated in terms
of (n � 1)!. The final step (0! = 1) is not recursive, however. The following notation
clearly distinguishes between the recursive step and the nonrecursive step (or base
case) in the definition of n!.

The following factorial() function uses recursion to compute the factorial of a
number.

long factorial (int n)
// Computes n! using recursion.
{

long result; // Result returned

if (n == 0)
result = 1; // Base case

else
result = n * factorial(n-1); // Recursive step

return result;
}

n
n

n n n
!

if (base case)

! if (recursive step)
=

=
• −() >

1 0

1 0

204 | Laboratory 10

Let’s look at the call factorial(4). Because 4 is not equal to 0 (the condition for
the base case), the factorial() function issues the recursive call factorial(3). The
recursive calls continue until the base case is reached—that is, until n equals 0.

factorial(4)
↓ RECURSIVE STEP

4*factorial(3)
↓ RECURSIVE STEP

3*factorial(2)
↓ RECURSIVE STEP

2*factorial(1)
↓ RECURSIVE STEP

1*factorial(0)
↓ BASE CASE
1

The calls to factorial() are evaluated in the reverse of the order they are made.
The evaluation process continues until the value 24 is returned by the call
factorial(4).

factorial(4)
↑ RESULT 24

4*factorial(3)
↑ RESULT 6

3*factorial(2)
↑ RESULT 2

2*factorial(1)
↑ RESULT 1

1*factorial(0)
↑ RESULT 1

1

Recursion can be used for more than numerical calculations, however. The
following pair of functions traverse a linked list, outputting the data items encountered
along the way.

template < class DT >
void List<DT>:: write () const

// Outputs the data items in a list from beginning to end. Assumes that
// objects of type DT can be output to the cout stream.

{
cout << “List : “;
writeSub(head);
cout << endl;

}

// -

template < class DT >
void List<DT>:: writeSub (ListNode<DT> *p) const

// Recursive partner of the write() function. Processes the sublist
// that begins with the node pointed to by p.

Recursion with Linked Lists | 205

{
if (p != 0)
{

cout << p->dataItem; // Output data item
writeSub(p->next); // Continue with next node

}
}

The role of the write() function is to initiate the recursive process, which is then
carried forward by its recursive partner the writeSub() function. Calling write()
with the linked list of characters

yields the following sequence of calls and outputs “abc”.

writeSub(head)
↓ RECURSIVE STEP

Output ‘a’ writeSub(p->next)
↓RECURSIVE STEP

Output ‘b’ writeSub(p->next)
↓RECURSIVE STEP

Output ‘c’ writeSub(p->next)
↓ BASE CASE

No output

Recursion also can be used to add nodes to a linked list. The following pair of
functions insert a data item at the end of a list.

template < class DT >
void List<DT>:: insertEnd (const DT &newDataItem)

// Inserts newDataItem at the end of a list. Moves the cursor to
// newDataItem.

{
insertEndSub(head,newDataItem);

}

// -

template < class DT >
void List<DT>:: insertEndSub (ListNode<DT> *&p,

const DT &newDataItem)

// Recursive partner of the insertEnd() function. Processes the
// sublist that begins with the node pointed to by p.

{
if (p != 0)

insertEndSub(p->next,newDataItem); // Continue searching for

head

a b c

206 | Laboratory 10

else // end of list
{

p = new ListNode<DT>(newDataItem,0); // Insert new node
cursor = p; // Move cursor

}
}

The insertEnd() function initiates the insertion process, with the bulk of the work
being done by its recursive partner, the insertEndSub() function. Calling
insertEnd() to insert the character ‘!’ at the end of the following list of characters:

yields the following sequence of calls.

insertEndSub(head)
↓RECURSIVE STEP

insertEndSub(p->next)
↓RECURSIVE STEP

insertEndSub(p->next)
↓RECURSIVE STEP

insertEndSub(p->next)
↓BASE CASE

Create a new node containing ‘!’

On the last call, p is null and the statement

p = new ListNode<LE>(newDataItem,0); // Insert new node

is executed to create a new node containing the character ‘!’. The address of this node
is then assigned to p. Because p is passed using call by reference, this assignment
changes the next pointer of the last node in the list (‘c’) to point to the new node,
thereby producing the following list:

Calling insertEnd() to insert the character ‘!’ into an empty list results in a
single call to the insertEndSub() function.

insertEndSub(head)
↓RECURSIVE STEP

Create a new node containing ‘!’

head

a b c !

head

a b c

Recursion with Linked Lists | 207

In this case, assigning the address of the newly created node to p changes the list’s
head pointer to point to this node.

Note that the insertEnd() function automatically links the node it creates into either
an existing list or an empty list without the use of special tests to determine whether
the insertion changes a node’s next pointer or the list’s head pointer. The key is that
parameter p is passed using call by reference.

head

!

208 | Laboratory 10

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 10: Cover Sheet

Recursion with Linked Lists | 209

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 10: Prelab Exercise

Recursion with Linked Lists | 211

Name __ Date _______________________

Section ___

We begin by examining a set of recursive functions that perform known tasks. These functions are
collected in the file listrec.cs. You can execute them using the test program in the file test10.cpp.

Part A

Step 1: To complete this laboratory, you need to use some of the functions from your singly
linked list implementation of the List ADT. Complete the partial implementation of the
List ADT in the file listrec.cs by adding the following functions from the linked list
implementation you developed in Laboratory 7:

• The constructor for the ListNode class.

• The List class constructor, destructor, insert(), clear(), and showStructure()
functions. Add any other functions that these depend on.

Prototypes for these functions are included in the declaration of the List class in the file
listrec.h. Add prototypes for any other functions as needed.

Step 2: Save the resulting implementation in the file listrec.cpp.

Step 3: Activate the calls to the write() and insertEnd() functions in the test program in the
file test10.cpp by removing the comment delimiter (and the characters ‘PA’) from the
lines beginning with “//PA”.

Step 4: Execute the write() and insertEnd() functions using the following list.

Step 5: What output does write() produce?

head

a b c

Step 6: What list does insertEnd() produce?

Step 7: Execute these functions using an empty list.

Step 8: What output does write() produce?

Step 9: What list does insertEnd() produce?

Part B
One of the most common reasons to use recursion with linked lists is to support
traversal of a list from its end back to its beginning. The following pair of functions
outputs each list data item twice, once as the list is traversed from beginning to end
and again as it is traversed from the end back to the beginning.

template < class DT >
void List<DT>:: writeMirror () const

// Outputs the data items in a list from beginning to end and back
// again. Assumes that objects of type DT can be output to the cout
// stream.

{
cout << “Mirror : “;
writeMirrorSub(head);
cout << endl;

}

// -

template < class DT >
void List<DT>:: writeMirrorSub (ListNode<DT> *p) const

// Recursive partner of the writeMirror() function. Processes the
// sublist that begins with the node pointed to by p.

{
if (p != 0)
{

cout << p->dataItem; // Output data item (forward)
writeMirrorSub(p->next); // Continue with next node
cout << p->dataItem; // Output data item (backward)

}
}

212 | Laboratory 10

Step 1: Activate the call to the writeMirror() function in the test program in the
file test10.cpp by removing the comment delimiter (and the characters ‘PB’)
from the lines beginning with “//PB”.

Step 2: Execute the writeMirror() function using the following list.

Step 3: What output does writeMirror() produce?

Step 4: Describe what each statement in the writeMirrorSub() function does
during the call in which parameter p points to the node containing ‘a’.

Step 5: What is the significance of the call to writeMirrorSub() in which
parameter p is null?

Step 6: Describe how the calls to writeMirrorSub() combine to produce the
“mirrored” output. Use a diagram to illustrate your answer.

head

a b c

Recursion with Linked Lists | 213

Part C
The following pair of functions reverse a list by changing each node’s next pointer.
Note that the pointers are changed on the way back through the list.

template < class DT >
void List<DT>:: reverse ()

// Reverses the order of the data items in a list.

{
reverseSub(0,head);

}

// -

template < class DT >
void List<DT>:: reverseSub (ListNode<DT> *p, ListNode<DT> *nextP)

// Recursive partner of the reverse() function. Processes the sublist
// that begins with the node pointed to by nextP.

{
if (nextP != 0)
{

reverseSub(nextP,nextP->next); // Continue with next node
nextP->next = p; // Reverse link

}
else

head = p; // Move head to end of list
}

Step 1: Activate the call to the reverse() function in the test program by removing
the comment delimiter (and the characters ‘PC’) from the lines beginning with
“//PC”.

Step 2: Execute the reverse() function using the following list.

Step 3: What list does reverse() produce?

head

a b c

214 | Laboratory 10

Step 4: Describe what each statement in the reverseSub() function does during the
call in which parameter p points to the node containing ‘a’. In particular, how
are the links to and from this node changed as a result of this call?

Step 5: What is the significance of the call to reverseSub() in which parameter p is
null?

Step 6: Describe how the calls to reverseSub() combine to reverse the list. Use a
diagram to illustrate your answer.

Recursion with Linked Lists | 215

Part D
In the Overview, you saw how you can use recursion in conjunction with call by
reference to insert a node at the end of a list. The following pair of functions use this
technique to delete the last node in a list.

template < class DT >
void List<DT>:: deleteEnd ()

// Deletes the data item at the end of a list. Moves the cursor to the
// beginning of the list.

{
deleteEndSub(head);
cursor = head;

}

// -

template < class DT >
void List<DT>:: deleteEndSub (ListNode<DT> *&p)

// Recursive partner of the deleteEnd() function. Processes the
// sublist that begins with the node pointed to by p.

{
if (p->next != 0)

deleteEndSub(p->next); // Continue looking for the last node
else
{

delete p; // Delete node
p = 0; // Set p (link or head) to null

}
}

Step 1: Activate the call to the deleteEnd() function in the test program by
removing the comment delimiter (and the characters ‘PD’) from the lines
beginning with “//PD”.

Step 2: Execute the deleteEnd() function using the following list.

Step 3: What list does deleteEnd() produce?

head

a b c

216 | Laboratory 10

Step 4: What is the significance of the calls to the deleteEndSub() function in
which p->next is not null?

Step 5: Describe what each statement in deleteEndSub() does during the call in
which p->next is null. Use a diagram to illustrate your answer.

Step 6: What list does deleteEnd() produce when called with a list containing one
data item? Describe how this result is accomplished. Use a diagram to
illustrate your answer.

Recursion with Linked Lists | 217

Part E
The following pair of functions determine the length of a list. These functions do not
simply count nodes as they move through the list from beginning to end (as an
iterative function would). Instead, they use a recursive definition of length in which
the length of the list pointed to by pointer p is the length of the list pointed to by
p->next (the remaining nodes in the list) plus one (the node pointed to by p).

template < class DT >
int List<DT>:: getLength () const

// Returns the number of data items in a list.

{
return getLengthSub(head);

}

// -

template < class DT >
int List<DT>:: getLengthSub (ListNode<DT> *p) const

// Recursive partner of the getLength() function. Processes the sublist
// that begins with the node pointed to by p.

{
int result; // Result returned

if (p == 0)
result = 0; // End of list reached

else
result = (getLengthSub(p->next) + 1); // Number of nodes after

// this one + 1
return result;

}

Step 1: Activate the call to the getLength() function in the test program by
removing the comment delimiter (and the characters ‘PE’) from the lines
beginning with “//PE”.

Step 2: Execute the getLength() function using the following list.

head

a b c

length p
if p = 0 (base case)

length(p->next) if p (recursive step)
() =

+ ≠

0

1 0

218 | Laboratory 10

Step 3: What result does getLength() produce?

Step 4: What is the significance of the call to the getLengthSub() function in
which parameter p is null?

Step 5: Describe how the calls to getLengthSub() combine to return the length of
the list. Use a diagram to illustrate your answer.

Step 6: What value does the getLength() function return when called with an
empty list? Describe how this value is computed. Use a diagram to illustrate
your answer.

Recursion with Linked Lists | 219

Laboratory 10: Bridge Exercise

220 | Laboratory 10

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

Part A
The following pair of functions perform some unspecified action.

template < class DT >
void List<DT>:: unknown1 () const

// Unknown function 1.

{
unknown1Sub(head);
cout << endl;

}

// -

template < class DT >
void List<DT>:: unknown1Sub (ListNode<DT> *p) const

// Recursive partner of the unknown1() function.

{
if (p != 0)
{

cout << p->dataItem;
if (p->next != 0)
{

unknown1Sub(p->next->next);
cout << p->next->dataItem;

}
}

}

Step 1: Activate the call to the unknown1() function in the test program in the file test10.cpp by
removing the comment delimiter (and the characters ‘BA’) from the lines beginning with
“//BA”.

Step 2: Execute the unknown1() function using the following list.

Step 3: What output does unknown1() produce?

Step 4: Describe what each statement in the unknown1Sub() function does during
the call in which parameter p points to the node containing ‘a’.

Step 5: Describe how the calls to unknown1Sub() combine to output the list. Use a
diagram to illustrate your answer.

Part B
The following pair of functions perform yet another unspecified action.

template < class DT >
void List<DT>:: unknown2 ()
// Unknown function 2.
{

unknown2Sub(head);
}

// -

head

a b c d e

Recursion with Linked Lists | 221

template < class DT >
void List<DT>:: unknown2Sub (ListNode<DT> *&p)
// Recursive partner of the unknown2() function.
{

ListNode<DT> *q;

if (p != 0 && p->next != 0)
{

q = p;
p = p->next;
q->next = p->next;
p->next = q;
unknown2Sub(q->next);

}
}

Step 1: Activate the call to the unknown2() function in the test program by
removing the comment delimiter (and the characters ‘BB’) from the lines
beginning with “//BB”.

Step 2: Execute the unknown2() function using the following list.

Step 3: What list does unknown2() produce?

Step 4: Describe what each statement in the unknown2Sub() function does during
the call in which parameter p points to the node containing ‘a’. In particular,
what role does the fact that p is passed using call by reference play in this
call?

Step 5: Describe how the calls to unknown2Sub() combine to restructure the list. Use
a diagram to illustrate your answer.

head

a b c d e

222 | Laboratory 10

Laboratory 10: In-lab Exercise 1

Recursion with Linked Lists | 223

Name __ Date _______________________

Section ___

Although recursion can be an intuitive means for expressing algorithms, there are times you may
wish to replace recursion with iteration. This replacement is most commonly done when analysis
of a program’s execution reveals that the overhead associated with a particular recursive routine is
too costly, either in terms of time or memory usage.

Part A
Replacing recursion in a routine such as the getLength() function (Prelab Exercise, Part E) is
fairly easy. Rather than using recursive calls to move through the list, you move a pointer of type
ListNode* from node to node. In the case of the getLength() function, this iterative process
continues until you reach the end of the list.

The reverse() function (Prelab Exercise, Part C) presents a somewhat more challenging
problem. The iterative form of this routine moves a set of pointers through the list in a coordinated
manner. As these pointers move through the list, they reverse the links between pairs of nodes,
thereby reversing the list itself.

Step 1: Create an implementation of the reverse() function that uses iteration, in conjunction
with a small set of pointers, in place of recursion. Call this function iterReverse() and
add it to the file listrec.cpp. A prototype for this function is included in the declaration of
the List class in the file listrec.h.

Step 2: Activate the call to the iterReverse() function in the test program in the file
test10.cpp by removing the comment delimiter (and the characters ‘1A’) from the lines
beginning with “//1A”.

Step 3: Prepare a test plan for the iterReverse() function that covers lists of different lengths,
including lists containing a single data item. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your iterReverse() function,
correct them and execute your test plan again.

Test Plan for the iterReverse Operation
Test Case List Expected Result Checked

224 | Laboratory 10

Part B
The writeMirror() function (Prelab Exercise, Part B) presents an even greater
challenge. The iterative form of this routine uses a stack to store pointers to the nodes
in a list. This stack is used in concert with an iterative process of the following form:

Stack<ListNode<DT>*> tempStack; // Stack of pointers
ListNode *p; // Iterates through list

Set p to the head of the list. // Traverse list from
while (p != 0) do // first to last
{

tempStack.push(p);
Process the list node pointed to by p (if necessary).
Advance p to the next node in the list.

}

while (!tempStack.isEmpty()) do // Traverse list from
{ // last to first

p = tempStack.pop();
Process the list node pointed to by p.

}

Step 1: Create an implementation of the writeMirror() function that uses iteration,
in conjunction with a stack, in place of recursion. Call the resulting function
stackWriteMirror() and add it to the file listrec.cpp. A prototype for this
function is included in the declaration of the List class in the file listrec.h.
Base your stackWriteMirror() function on one of your implementations
of the Stack ADT from Laboratory 5.

Step 2: Activate the call to the stackWriteMirror() function in the test program
by removing the comment delimiter (and the characters ‘1B’) from the lines
beginning with “//1B”.

Step 3: Prepare a test plan for the stackWriteMirror() function that covers lists of
different lengths, including lists containing a single data item. A test plan
form follows.

Step 4: Execute your test plan. If you discover mistakes in your stackWrite-
Mirror() function, correct them and execute your test plan again.

Recursion with Linked Lists | 225

Test Plan for the stackWriteMirror Operation
Test Case List Expected Result Checked

226 | Laboratory 10

Laboratory 10: In-lab Exercise 2

Recursion with Linked Lists | 227

Name __ Date _______________________

Section ___

You saw in the Prelab that you can use recursion to insert a data item at the end of a list. You also
can use recursion to add data items at the beginning and middle of lists.

void aBeforeb ()

Requirements:
List contains characters.

Results:
Inserts the character ‘a’ immediately before each occurrence of the character ‘b’. Does not move
the cursor.

Step 1: Create an implementation of the aBeforeb() function that is based on recursion—not
iteration—and add your implementation to the file listrec.cpp. A prototype for this
function is included in the declaration of the List class in the file listrec.h.

Step 2: Activate the call to the aBeforeb() function in the test program in the file test10.cpp by
removing the comment delimiter (and the character ‘2’) from the lines beginning with
“//2”.

Step 3: Prepare a test plan for this function that includes lists containing the character ‘b’ at the
beginning, middle, and end. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the
aBeforeb() function, correct them and execute your test plan again.

Test Plan for the aBeforeb Operation
Test Case List Expected Result Checked

228 | Laboratory 10

Laboratory 10: In-lab Exercise 3

Recursion with Linked Lists | 229

Name __ Date _______________________

Section ___

You saw in the Prelab that you can use recursion to delete the data item at the end of a list. You
also can use recursion to express the restructuring required following the deletion of data items at
the beginning and middle of lists.

void cRemove ()

Requirements:
List contains characters.

Results:
Removes all the occurrences of the character ‘c’ from a list of characters. Moves the cursor to the
beginning of the list.

Step 1: Create an implementation of the cRemove() function that is based on recursion—not
iteration—and add it to the file listrec.cpp. A prototype for this function is included in the
declaration of the List class in the file listrec.h.

Step 2: Activate the call to the cRemove() function in the test program in the file test10.cpp by
removing the comment delimiter (and the character ‘3’) from the lines beginning with
“//3”.

Step 3: Prepare a test plan for this function that includes lists containing the character ‘c’ at the
beginning, middle, and end. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the
cRemove() function, correct them and execute your test plan again.

Test Plan for the cRemove Operation
Test Case List Expected Result Checked

230 | Laboratory 10

Laboratory 10: Postlab Exercise 1

Recursion with Linked Lists | 231

Name __ Date _______________________

Section ___

One mistake we sometimes make when we first begin writing recursive routines is to use a while
loop in place of an if selection structure. Suppose we replace the if statement

if (p != 0)
{

cout << p->dataItem; // Output forward
writeMirrorSub(p->next); // Continue with next node
cout << p->dataItem; // Output backward

}

in the writeMirrorSub() function (Prelab Exercise, Part B) with the while loop

while (p != 0)
{

cout << p->dataItem; // Output forward
writeMirrorSub(p->next); // Continue with next node
cout << p->dataItem; // Output backward

}

What would be the consequence of this change?

Laboratory 10: Postlab Exercise 2

Recursion with Linked Lists | 233

Name __ Date _______________________

Section ___

It is often impossible to convert a recursive routine to iterative form without the use of a stack (see
In-lab Exercise 1). Explain why a stack is needed in the iterative form of the writeMirror()
function.

In this laboratory you will:

Create an implementation of the Binary Search Tree
ADT using a linked tree structure

Examine how an index can be used to retrieve records
from a database file and construct an indexing
program for an accounts database

Create operations that compute the height of a tree
and output the data items in a tree whose keys are
less than a specified key

Analyze the efficiency of your implementation of the
Binary Search Tree ADT

Binary Search Tree ADT

O
bjectives

Overview

In this laboratory, you examine how a binary tree can be used to represent the
hierarchical search process embodied in the binary search algorithm.

The binary search algorithm allows you to efficiently locate a data item in an
array provided that each array data item has a unique identifier, called its key, and
that the array data items are stored in order based on their keys. Given the following
array of keys,

Index 0 1 2 3 4 5 6

Key 16 20 31 43 65 72 86

a binary search for the data item with key 31 begins by comparing 31 with the key in
the middle of the array, 43. Because 31 is less than 43, the data item with key 31 must
lie in the lower half of the array (entries 0–2). The key in the middle of this subarray is
20. Because 31 is greater than 20, the data item with key 31 must lie in the upper half
of this subarray (entry 2). This array entry contains the key 31. Thus, the search
terminates with success.

Although the comparisons made during a search for a given key depend on the
key, the relative order in which comparisons are made is invariant for a given array of
data items. For instance, when searching through the previous array, you always
compare the key that you are searching for with 43 before you compare it with either
20 or 72. Similarly, you always compare the key with 72 before you compare it with
either 65 or 86. The order of comparisons associated with this array is shown below.

Index 0 1 2 3 4 5 6

Key 16 20 31 43 65 72 86

Order compared 3 2 3 1 3 2 3

The hierarchical nature of the comparisons that are performed by the binary search
algorithm is reflected in the following tree.

Observe that for each key K in this tree, all of the keys in K’s left subtree are less
than K and all of the keys in K’s right subtree are greater than K. Trees with this
property are referred to as binary search trees.

When searching for a key in a binary search tree, you begin at the root node and
move downward along a branch until either you find the node containing the key or
you reach a leaf node without finding the key. Each move along a branch corresponds
to an array subdivision in the binary search algorithm. At each node, you move down
to the left if the key you are searching for is less than the key stored in the node, or
you move down to the right if the key you are searching for is greater than the key
stored in the node.

Order
compared

1

2

3

72

86653116

43

20

236 | Laboratory 11

Binary Search Tree ADT

Data Items
The data items in a binary search tree are of generic type DT. Each data item has a key
(of generic type KF) that uniquely identifies the data item. Data items usually include
additional data. Objects of type KF must support the six basic relational operators.
Objects of type DT must provide a functional getKey() that returns a data item’s key.

Structure
The data items form a binary tree. For each data item D in the tree, all the data items
in D’s left subtree have keys that are less than D’s key and all the data items in D’s
right subtree have keys that are greater than D’s key.

Operations
BSTree ()

Requirements:
None

Results:
Constructor. Creates an empty binary search tree.

~BSTree ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a binary search tree.

void insert (const DT &newDataItem) throw (bad_alloc)

Requirements:
Binary search tree is not full.

Results:
Inserts newDataItem into a binary search tree. If a data item with the same key as
newDataItem already exists in the tree, then updates that data item’s nonkey fields
with newDataItem’s nonkey fields.

bool retrieve (KF searchKey, DT &searchDataItem) const

Requirements:
None

Results:
Searches a binary search tree for the data item with key searchKey. If this data item is
found, then copies the data item to searchDataItem and returns true. Otherwise,
returns false with searchDataItem undefined.

Binary Search Tree ADT | 237

bool remove (KF deleteKey)

Requirements:
None

Results:
Deletes the data item with key deleteKey from a binary search tree. If this data item
is found, then deletes it from the tree and returns true. Otherwise, returns false.

void writeKeys () const

Requirements:
None

Results:
Outputs the keys of the data items in a binary search tree. The keys are output in
ascending order, one per line.

void clear ()

Requirements:
None

Results:
Removes all the data items in a binary search tree.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a binary search tree is empty. Otherwise, returns false.

bool isFull () const

Requirements:
None

Results:
Returns true if a binary search tree is full. Otherwise, returns false.

void showStructure () const

Requirements:
None

Results:
Outputs the keys in a binary search tree. The tree is output with its branches oriented
from left (root) to right (leaves); that is, the tree is output rotated counterclockwise 90
degrees from its conventional orientation. If the tree is empty, outputs “Empty tree”.
Note that this operation is intended for debugging purposes only.

238 | Laboratory 11

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 11: Cover Sheet

Binary Search Tree ADT | 239

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 11: Prelab Exercise

Binary Search Tree ADT | 241

Name __ Date _______________________

Section ___

Step 1: Implement the operations in Binary Search Tree ADT using a linked tree structure. As
with the linear linked structures you developed in prior laboratories, your implementation
of the linked tree structure uses a pair of classes: one for the nodes in the tree
(BSTreeNode) and one for the overall tree structure (BSTree). Each node in the tree
should contain a data item (dataItem) and a pair of pointers to the node’s children
(left and right). Your implementation should also maintain a pointer to the tree’s root
node (root). Base your implementation on the following declarations from the file
bstree.hs. An implementation of the showStructure operation is given in the file
show11.cpp.

template < class DT, class KF >
class BSTreeNode // Facilitator for the BSTree class
{
private:

// Constructor
BSTreeNode (const DT &nodeDataItem,

BSTreeNode *leftPtr, BSTreeNode *rightPtr);

// Data members
DT dataItem; // Binary search tree data item
BSTreeNode *left, // Pointer to the left child

*right; // Pointer to the right child

friend class BSTree<DT,KF>;
};

template < class DT, class KF > // DT : tree data item
class BSTree // KF : key field
{
public:

// Constructor
BSTree ();

// Destructor
~BSTree ();

// Binary search tree manipulation operations
void insert (const DT &newDataItem) // Insert data item

throw (bad_alloc);
bool retrieve (KF searchKey, DT &searchDataItem) const;

// Retrieve data item
bool remove (KF deleteKey); // Remove data item
void writeKeys () const; // Output keys
void clear (); // Clear tree

// Binary search tree status operations
bool isEmpty () const; // Tree is empty
bool isFull () const; // Tree is full

// Output the tree structure -- used in testing/debugging
void showStructure () const;

private:

// Recursive partners of the public member functions -- insert
// prototypes of these functions here.
void showSub (BSTreeNode<DT,KF> *p, int level) const;

// Data member
BSTreeNode<DT,KF> *root; // Pointer to the root node

};

Step 2: The declaration of the BSTree class in the file bstree.hs does not include
prototypes for the recursive private member functions needed by your
implementation of the Binary Search Tree ADT. Add these prototypes and
save the resulting class declarations in the file bstree.h.

Step 3: Save your implementation of the Binary Search Tree ADT in the file
bstree.cpp. Be sure to document your code.

242 | Laboratory 11

Laboratory 11: Bridge Exercise

Binary Search Tree ADT | 243

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program in the file test11.cpp allows you to interactively test your implementation of
the Binary Search Tree ADT using the following commands.

Command Action

+key Insert (or update) the data item with the specified key.
?key Retrieve the data item with the specified key and output it.
-key Delete the data item with the specified key.
K Output the keys in ascending order.
E Report whether the tree is empty.
F Report whether the tree is full.
C Clear the tree.
Q Quit the test program.

Step 1: Prepare a test plan for your implementation of the Binary Search Tree ADT. Your test
plan should cover trees of various shapes and sizes, including empty, single branch, and
single data item trees. A test plan form follows.

Step 2: Execute your test plan. If you discover mistakes in your implementation, correct them
and execute your test plan again.

Test Plan for the Operations in the Binary Search Tree ADT
Test Case Commands Expected Result Checked

Laboratory 11: In-lab Exercise 1

244 | Laboratory 11

Name __ Date _______________________

Section ___

A database is a collection of related pieces of information that is organized for easy retrieval. The
following set of accounts records, for instance, form an accounts database.

Record # Account ID First name Last name Balance

0 6274 James Johnson 415.56

1 2843 Marcus Wilson 9217.23

2 4892 Maureen Albright 51462.56

3 8337 Debra Douglas 27.26

4 9523 Bruce Gold 719.32

5 3165 John Carlson 1496.24

Each record in the accounts database is assigned a record number based on that record’s
relative position within the database file. You can use a record number to retrieve an account
record directly, much as you can use an array index to reference an array data item directly. The
following program from the file getdbrec.cpp, for example, retrieves a record from the accounts
database in the file accounts.dat.

#include <iostream>
#include <fstream>

using namespace std;

//--
//
// Declarations specifying the accounts database
//

const int nameLength = 11; // Maximum number of characters in
// a name

const long bytesPerRecord = 38; // Number of bytes used to store
// each record in the accounts
// database file

struct AccountRecord
{

int acctID; // Account identifier
char firstName[nameLength], // Name of account holder

lastName[nameLength];
double balance; // Account balance

};

void main ()
{

ifstream acctFile (“accounts.dat”); // Accounts database file
AccountRecord acctRec; // Account record
long recNum; // User input record number

// Get the record number to retrieve.

cout << endl << “Enter record number: “;
cin >> recNum;

// Move to the corresponding record in the database file using the
// seekg() function.

acctFile.seekg(recNum*bytesPerRecord);

// Read in the record.

acctFile >> acctRec.acctID >> acctRec.firstName
>> acctRec.lastName >> acctRec.balance;

// Display the record.

cout << recNum << “ : “ << acctRec.acctID << “ ”
<< acctRec.firstName << “ “ << acctRec.lastName << “ ”
<< acctRec.balance << endl;

}

Record numbers are assigned by the database file mechanism and are not part of
the account information. As a result, they are not meaningful to database users. These
users require a different record retrieval mechanism, one that is based on an account
ID (the key for the database) rather than a record number.

Retrievals based on account ID require an index that associates each account ID
with the corresponding record number. You can implement this index using a binary
search tree in which each data item contains two fields: an account ID (the key) and a
record number.

struct IndexEntry
{

int acctID; // (Key) Account identifier
long recNum; // Record number

int getKey () const
{ return acctID; } // Return key field

};

BSTree<IndexEntry,int> index; // Database index

You build the index by reading through the database account by account,
inserting successive (account ID, record number) pairs into the tree as you progress
through the file. The following index tree, for instance, was produced by inserting the
account records shown above into an (initially) empty tree.

Binary Search Tree ADT | 245

Given an account ID, retrieval of the corresponding account record is a two-step
process. First, you retrieve the data item from the index tree that has the specified
account ID. Then, using the record number stored in the index data item, you read the
corresponding account record from the database file. The result is an efficient retrieval
process that is based on account ID.

Step 1: Using the program shell given in the file database.cs as a basis, create a
program that builds an index tree for the accounts database in the file
accounts.dat. Once the index is built, your program should

• Output the account IDs in ascending order

• Read an account ID from the keyboard and output the corresponding
account record

Step 2: Test your program using the accounts database in the text file accounts.dat. A
copy of this database in given below. Try to retrieve several account IDs,
including account IDs that do not occur in the database. A test plan form
follows.

Record # Account ID First name Last name Balance

0 6274 James Johnson 415.56

1 2843 Marcus Wilson 9217.23

2 4892 Maureen Albright 51462.56

3 8337 Debra Douglas 27.26

4 9523 Bruce Gold 719.32

5 3165 John Carlson 1496.24

6 1892 Mary Smith 918.26

7 3924 Simon Becker 386.85

8 6023 John Edgar 9.65

9 5290 George Truman 16110.68

10 8529 Ellen Fairchild 86.77

11 1144 Donald Williams 4114.26

1892
4

4892
2

9523
5

6274
0

2843
1

8837
3

246 | Laboratory 11

Test Plan for the Accounts Database Indexing Program
Test Case Expected Result Checked

Binary Search Tree ADT | 247

Laboratory 11: In-lab Exercise 1

248 | Laboratory 11

Name __ Date _______________________

Section ___

Binary search trees containing the same data items can vary widely in shape depending on the
order in which the data items were inserted into the trees. One measurement of a tree’s shape is its
height—that is, the number of nodes on the longest path from the root node to any leaf node. This
statistic is significant because the amount of time that it can take to search for a data item in a
binary search tree is a function of the height of the tree.

int getHeight () const;

Requirements:
None

Results:
Returns the height of a binary search tree.

You can compute the height of a binary search tree using a postorder traversal and the
following recursive definition of height:

Step 1: Implement this operation and add it to the file bstree.cpp. A prototype for this operation
is included in the declaration of the BSTree class in the file bstree.h.

Step 2: Activate the ‘H’ (height) command in the test program in the file test11.cpp by removing
the comment delimiter (and the character ‘H’) from the lines that begin with “//H”.

Step 3: Prepare a test plan for this operation that covers trees of various shapes and sizes,
including empty and single-branch trees. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the height
operation, correct them and execute your test plan again.

height
if base case

height height if recursive step
p

 p ()

max((p left), (p right)) p ()
() =

=
→ → + ≠

0 0

1 0

Test Plan for the getHeight Operation
Test Case Commands Expected Result Checked

Binary Search Tree ADT | 249

Laboratory 11: In-lab Exercise 1

250 | Laboratory 11

Name __ Date _______________________

Section ___

You have created operations that retrieve a single data item from a binary search tree and output
all the keys in a tree. The following operation outputs only those keys that are less than a specified
key.

void writeLessThan (KF searchKey) const

Requirements:
None

Results:
Outputs the keys in a binary search tree that are less than searchKey. The keys are output in
ascending order. Note that searchKey need not be a key in the tree.

You could implement this operation using an inorder traversal of the entire tree in which you
compare each key with searchKey and output those that are less than searchKey. Although
successful, this approach is inefficient. It searches subtrees that you know cannot possibly contain
keys that are less than searchKey.

Suppose you are given a searchKey value of 37 and the following binary search tree:

Because the root node contains the key 43, you can determine immediately that you do not need
to search the root node’s right subtree for keys that are less than 37. Similarly, if the value of
searchKey were 67, then you would need to search the root node’s right subtree but would not
need to search the right subtree of the node whose key is 72. Your implementation of the
writeLessThan operation should use this idea to limit the portion of the tree that must be
searched.

Step 1: Implement this operation and add it to the file bstree.cpp. A prototype for this operation
is included in the declaration of the BSTree class in the file bstree.h.

Step 2: Activate the ‘<’ (less than) command in the test program in the file test11.cpp by
removing the comment delimiter (and the character ‘<’) from the lines that begin with
“//<”.

43

20

16 31 65 86

72

Step 3: Prepare a test plan for this operation that includes a variety of trees and
values for searchKey, including values of searchKey that do not occur in a
particular tree. Be sure to include test cases that limit searches to the left
subtree of the root node, the left subtree and part of the right subtree of the
root node, the leftmost branch in the tree, and the entire tree. A test plan
form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of
the writeLessThan operation, correct them and execute your test plan
again.

Test Plan for the writeLessThan Operation
Test Case Commands Expected Result Checked

Binary Search Tree ADT | 251

Laboratory 11: Postlab Exercise 1

Binary Search Tree ADT | 253

Name __ Date _______________________

Section ___

What are the heights of the shortest and tallest binary search trees that can be constructed from a
set of N distinct keys? Give examples that illustrate your answer.

Laboratory 11: Postlab Exercise 2

Binary Search Tree ADT | 255

Name __ Date _______________________

Section ___

Given the shortest possible binary search tree containing N distinct keys, develop worst-case,
order-of-magnitude estimates of the execution time of the following Binary Search Tree ADT
operations. Briefly explain your reasoning behind each of your estimates.

retrieve O()

Explanation:

insert O()

Explanation:

remove O()

Explanation:

writeKeys O()

Explanation:

256 | Laboratory 11

In this laboratory you will:

Create an implementation of the Expression Tree ADT
using a linked tree structure

Develop an implementation of the Logic Expression
Tree ADT and use your implementation to model a
simple logic circuit

Create an expression tree copy constructor

Analyze how preorder, inorder, and postorder tree
traversals are used in your implementation of the
Expression Tree ADT

Expression Tree ADT

O
bjectives

Overview

Although you ordinarily write arithmetic expressions in linear form, you treat them as
hierarchical entities when you evaluate them. When evaluating the following
arithmetic expression, for example,

(1+3)*(6-4)

you first add 1 and 3, then you subtract 4 from 6. Finally, you multiply these
intermediate results together to produce the value of the expression. In performing
these calculations, you have implicitly formed a hierarchy in which the multiply
operator is built on a foundation consisting of the addition and subtraction operators.
You can represent this hierarchy explicitly using the following binary tree. Trees such
as this one are referred to as expression trees.

Expression Tree ADT

Data Items
Each node in an expression tree contains either an arithmetic operator or a numeric
value.

Structure
The nodes form a tree in which each node containing an arithmetic operator has a pair
of children. Each child is the root node of a subtree that represents one of the
operator’s operands. Nodes containing numeric values have no children.

Operations
ExprTree ()

Requirements:
None

Results:
Constructor. Creates an empty expression tree.

–

4631

*

+

258 | Laboratory 12

~ExprTree ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store an expression tree.

void build () throw (bad_alloc)

Requirements:
None

Results:
Reads an arithmetic expression in prefix form from the keyboard and builds the
corresponding expression tree.

void expression () const

Requirements:
None

Results:
Outputs the corresponding arithmetic expression in fully parenthesized infix form.

float evaluate () const throw (logic_error)

Requirements:
Expression tree is not empty.

Results:
Returns the value of the corresponding arithmetic expression.

void clear ()

Requirements:
None

Results:
Removes all the data items in an expression tree.

void showStructure () const

Requirements:
None

Results:
Outputs an expression tree with its branches oriented from left (root) to right (leaves)—
that is, the tree is output rotated counterclockwise 90 degrees from its conventional
orientation. If the tree is empty, outputs “Empty tree”. Note that this operation is
intended for testing/debugging purposes only. It assumes that arithmetic expressions
contain only single-digit, nonnegative integers and the arithmetic operators for
addition, subtraction, multiplication, and division.

Expression Tree ADT | 259

We commonly write arithmetic expressions in infix form—that is, with each operator
placed between its operands, as in the following expression:

(1 + 3) * (6 — 4)

In this laboratory, you construct an expression tree from the prefix form of an
arithmetic expression. In prefix form, each operator is placed immediately before its
operands. The expression above is written in prefix form as

* + 1 3 — 6 4

When processing the prefix form of an arithmetic expression from left to right,
you will, by definition, encounter each operator followed by its operands. If you know
in advance the number of operands an operator has, you can use the following
recursive process to construct the corresponding expression tree.

Read the next arithmetic operator or numeric value.

Create a node containing the operator or numeric value.

if the node contains an operator

then Recursively build the subtrees that correspond to the

operator’s operands.

else The node is a leaf node.

If you apply this process to the arithmetic expression

* + 1 3 — 6 4

then construction of the corresponding expression tree proceeds as follows:

260 | Laboratory 12

Note that in processing this arithmetic expression we have assumed that all
numeric values are single-digit, nonnegative integers, and thus, that all numeric values
can be represented as a single character. If we were to generalize this process to
include multidigit numbers, we would have to include delimiters in the expression to
separate numbers.

4

6

–

*

31

*

+

*

+

1

*

+

31

*

+ –

31

*

+

6

–

31

*

+

Read '*' Read '+'

Read '1' Read '3'

Read '–' Read '6'

Read '4'

Expression Tree ADT | 261

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 12: Cover Sheet

Expression Tree ADT | 263

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 12: Prelab Exercise

Expression Tree ADT | 265

Name __ Date _______________________

Section ___

In the Overview you saw how the construction of an expression tree can be described using
recursion. In this exercise you will use recursive functions to implement the operations in the
Expression Tree ADT.

Step 1: Implement the operations in Expression Tree ADT using a linked tree structure. Assume
that an arithmetic expression consists of single-digit, nonnegative integers (‘0’..‘9’) and
the four basic arithmetic operators (‘+’, ‘–’, ‘*’, and ‘/’). Further assume that each
arithmetic expression is input in prefix form from the keyboard with all of the characters
on one line.

As with the linear linked structures you developed in prior laboratories, your
implementation of the linked tree structure uses a pair of classes: one for the nodes in the
tree (ExprTreeNode) and one for the overall tree structure (ExprTree). Each node in the
tree should contain a character (dataItem) and a pair of pointers to the node’s children
(left and right). Your implementation also should maintain a pointer to the tree’s root
node (root). Base your implementation on the following declarations from the file
exprtree.hs. An implementation of the showStructure operation is given in the file
show12.cpp.

class ExprTree; // Forward declaration of the ExprTree class

class ExprTreeNode // Facilitator class for the ExprTree class
{
private:

// Constructor
ExprTreeNode (char elem,

ExprTreeNode *leftPtr, ExprTreeNode *rightPtr);

// Data members
char dataItem; // Expression tree data item
ExprTreeNode *left, // Pointer to the left child

*right; // Pointer to the right child

friend class ExprTree;
};

//--

class ExprTree
{
public:

// Constructor
ExprTree ();

// Destructor
~ExprTree ();

// Expression tree manipulation operations
void build () // Build tree from prefix expression

throw (bad_alloc);
void expression () const; // Output expression in infix form
float evaluate () const // Evaluate expression

throw (logic_error);
void clear (); // Clear tree

// Output the tree structure -- used in testing/debugging
void showStructure () const;

private:

// Recursive partners of the public member functions -- insert
// prototypes of these functions here.
void showSub (ExprTreeNode *p, int level) const;

// Data member
ExprTreeNode *root; // Pointer to the root node

};

Step 2: The declaration of the ExprTree class in the file exprtree.hs does not include
prototypes for the recursive private member functions needed by your
implementation of the Expression Tree ADT. Add these prototypes and save
the resulting class declarations in the file exprtree.h.

Step 3: Save your implementation of the Expression Tree ADT in the file exprtree.cpp.
Be sure to document your code.

266 | Laboratory 12

Laboratory 12: Bridge Exercise

Expression Tree ADT | 267

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

Test your implementation of the Expression Tree ADT using the test program in the file
test12.cpp.

Step 1: Compile your implementation of the Expression Tree ADT in the file exprtree.cpp.

Step 2: Compile the test program in the file test12.cpp.

Step 3: Link the object files produced by Steps 1 and 2.

Step 4: Complete the following test plan by filling in the expected result for each arithmetic
expression. You may wish to add arithmetic expressions to the test plan.

Step 5: Execute this test plan. If you discover mistakes in your implementation of the Expression
Tree ADT, correct them and execute the test plan again.

Test Plan for the Operations in the Expression Tree ADT
Test Case Arithmetic Expression Expected Result Checked

One operator +34

Nested operators *+34/52

All operators at start -/*9321

Uneven nesting *4+6-75

Zero dividend /02

Single-digit number 7

Laboratory 12: In-lab Exercise 1

268 | Laboratory 12

Name __ Date _______________________

Section ___

Computers are composed of logic circuits that take a set of Boolean input values and produce a
Boolean output. You can represent this mapping from inputs to output with a logic expression
consisting of the Boolean logic operators AND, OR, and NOT (defined below) and the Boolean
values True (1) and False (0).

(NOT) (AND) (OR)

A -A A B A*B A+B

0 1 0 0 0 0

1 0 0 1 0 1

1 0 0 1

1 1 1 1

Just as you can construct an arithmetic expression tree from an arithmetic expression, you can
construct a logic expression tree from a logic expression. For example, the following logic
expression:

(1*0)+(1*-0)

can be expressed in prefix form as

+*10*1-0

Applying the expression tree construction process described in the overview to this expression
produces the following logic expression tree.

Evaluating this tree yields the Boolean value True (1).

101

+

0

* *

–

Construction of this tree requires processing a unary operator, the Boolean
operator NOT (‘-’). When building a logic expression tree, we will choose to set the
right child of any node containing the NOT operator to point to the operand and set
the left child to null. Note that you must be careful when performing the remaining
operations to avoid traversing these null left children.

Step 1: Modify the prototype of the evaluate() function in the file exprtree.h so
that this function yields an integer value rather than a floating-point number.
You may also need to modify the prototype of a related recursive private
member function. Save the resulting class declarations in the file logitree.h.

Step 2: Create an implementation of the Expression Tree ADT that supports logic
expressions consisting of the Boolean values True and False (‘1’ and ‘0’) and
the Boolean operators AND, OR, and NOT (‘*’, ‘+’, and ‘–’). Base your
implementation on the declarations in the file logitree.h. Save your
implementation of the Logic Expression Tree ADT in the file logitree.cpp.

Step 3: Modify the test program in the file test12.cpp so that the header file for the
Logic Expression Tree ADT (logitree.h) is included in place of the header file
for the (arithmetic) Expression Tree ADT.

Step 4: Compile and link your implementation of the Logic Expression Tree ADT and
the modified test program.

Step 5: Complete the following test plan by filling in the expected result for each
logic expression. You may wish to include additional logic expressions in this
test plan.

Step 6: Execute this test plan. If you discover mistakes in your implementation of the
Logic Expression Tree ADT, correct them and execute the test plan again.

Test Plan for the Operations in the Logic Expression Tree ADT
Test Case Logic Expression Expected Result Checked

One operator +10

Nested operators *+10+01

NOT (Boolean value) +*10*1-0

NOT (subexpression) +-1-*11

NOT (nested expression) -*+110

Double negation --1

Boolean value 1

Expression Tree ADT | 269

Having produced a tool that constructs and evaluates logic expression trees, you
can use this tool to investigate the use of logic circuits to perform binary arithmetic.
Suppose you have two one-bit binary numbers (X and Y). You can add these numbers
together to produce a one-bit sum (S) and a one-bit carry (C). The results of one-bit
binary addition for all combinations of X and Y are tabulated below.

A brief analysis of this table reveals that you can compute the values of outputs S
and C from inputs X and Y using the following pair of (prefix) logic expressions.

C = *XY S = +*X–Y*–XY

Step 7: Using your implementation of the Logic Expression Tree ADT and the
modified test program, confirm that these expressions are correct by
completing the following table.

X Y C = *XY S = +*X–Y*–XY

0 0 *00 = +*0–0*–00 =

0 1 *01 = +*0–1*–01 =

1 0 *10 = +*1–0*–10 =

1 1 *11 = +*1–1*–11 =

X

0

0

1

1

Y

0

1

0

1

C

0

0

0

1

S

0

1

1

0

X

+ Y

C S

270 | Laboratory 12

Laboratory 12: In-lab Exercise 2

Expression Tree ADT | 271

Name __ Date _______________________

Section ___

In Laboratory 8 you created a copy constructor for a data structure that was represented using a
linked list. In this exercise, you create a copy constructor for your linked tree implementation of
the Expression Tree ADT.

ExprTree (const ExprTree &valueTree)

Requirements:
None

Results:
Copy constructor. Creates a copy of valueTree. This constructor is automatically invoked
whenever an expression tree is passed to a function using call by value, a function returns an
expression tree, or an expression tree is initialized using another expression tree.

Step 1: Implement this operation and add it to the file exprtree.cpp. A prototype for this
operation is included in the declaration of the ExprTree class in the file exprtree.h.

Step 2: Activate the test for the copy constructor in the test program in the file test12.cpp by
removing the comment delimiter (and the character ‘2’) from the lines that begin with
“//2”.

Step 3: Prepare a test plan for this operation that includes a variety of expression trees, including
empty trees and trees containing a single data item. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the copy
constructor, correct them and execute the test plan again.

Test Plan for the Copy Constructor
Test Case Arithmetic Expression Expected Result Checked

272 | Laboratory 12

Laboratory 12: In-lab Exercise 1

Expression Tree ADT | 273

Name __ Date _______________________

Section ___

You no doubt remember the commutative property in mathematics. It guarantees, for instance,
that a+b = b+a. Swapping the + operator’s operands results in an expression that has the same
value. The commutative property is not true for all operators—a/b is generally not equal to b/a—
but the operands of all binary operators can be commuted (swapped). Commuting the operators in
an arithmetic expression requires restructuring the nodes in the corresponding expression tree. For
example, commuting every operator in the expression tree

yields the expression tree

An operation for commuting expression trees is described below.

void commute ()

Requirements:
None

Results:
Commutes the operands for every arithmetic operator in an expression tree.

Step 1: Implement this operation and add it to the file exprtree.cpp. A prototype for this
operation is included in the declaration of the ExprTree class in the file exprtree.h.

Step 2: Activate the test for the commute operation in the test program in the file test12.cpp by
removing the comment delimiter (and the character ‘3’) from the lines that begin with
“//3”.

+

1364

*

–

–

4631

*

+

Step 3: Prepare a test plan for this operation that includes a variety of arithmetic
expressions. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of
the commute operation, correct them and execute the test plan again.

Test Plan for the Commute Operation
Test Case Arithmetic Expression Expected Result Checked

274 | Laboratory 12

Laboratory 12: Postlab Exercise 1

Expression Tree ADT | 275

Name __ Date _______________________

Section ___

What type of tree traversal (inorder, preorder, or postorder) serves as the basis of your
implementation of each of the following Expression Tree ADT operations? Briefly explain why you
used a given traversal to implement a particular operation.

build

Traversal:

Explanation:

expression

Traversal:

Explanation:

evaluate

Traversal:

Explanation:

clear

Traversal:

Explanation:

276 | Laboratory 12

Laboratory 12: Postlab Exercise 2

Expression Tree ADT | 277

Name __ Date _______________________

Section ___

Consider the functions writeSub1() and writeSub2() given below:

void writeSub1 (ExprTreeNode *p) const
{

if (p != 0)
{

writeSub1(p->left);
cout << p->dataItem;
writeSub1(p->right);

}
}

void writeSub2 (ExprTreeNode *p) const
{

if (p->left != 0) writeSub2(p->left);
cout << p->dataItem;
if (p->right != 0) writeSub2(p->right);

}

Let root be the pointer to the root node of a nonempty expression tree. Will the following pair of
function calls produce the same output?

writeSub1(root); and writeSub2(root);

If not, why not? If so, how do the functions differ and why might this difference be important?

In this laboratory you will:

Create an implementation of the Weighted Graph ADT
using a vertex list and an adjacency matrix

Develop a routine that finds the least costly (or
shortest) path between each pair of vertices in a
graph

Add vertex coloring and implement a function that
checks whether a graph has a proper coloring

Investigate the Four-Color Theorem by generating a
graph for which no proper coloring can be created
using less than five colors

Weighted Graph ADT

O
bjectives

Overview

Many relationships cannot be expressed easily using either a linear or a hierarchical
data structure. The relationship between the cities connected by a highway network is
one such relationship. Although it is possible for the roads in the highway network to
describe a relationship between cities that is either linear (a one-way street, for
example) or hierarchical (an expressway and its off ramps, for instance), we all have
driven in circles enough times to know that most highway networks are neither linear
nor hierarchical. What we need is a data structure that lets us connect each city to any
of the other cities in the network. This type of data structure is referred to as a graph.

Like a tree, a graph consists of a set of nodes (called vertices) and a set of edges.
Unlike a tree, an edge in a graph can connect any pair of vertices, not simply a parent
and its child. The following graph represents a simple highway network.

Each vertex in the graph has a unique label that denotes a particular city. Each edge
has a weight that denotes the cost (measured in terms of distance, time, or money) of
traversing the corresponding road. Note that the edges in the graph are undirected;
that is, if there is an edge connecting a pair of vertices A and B, this edge can be used
to move either from A to B or from B to A. The resulting weighted, undirected graph
expresses the cost of traveling between cities using the roads in the highway network.
In this laboratory, you focus on the implementation and application of weighted,
undirected graphs.

Weighted Graph ADT

Data Items
Each vertex in a graph has a label (of type char*) that uniquely identifies it. Vertices
may include additional data.

Structure
The relationship between the vertices in a graph is expressed using a set of undirected
edges, where each edge connects one pair of vertices. Collectively, these edges define a
symmetric relation between the vertices. Each edge in a weighted graph has a weight
that denotes the cost of traversing that edge.

B

A E

D

C

100

50

112

93

87

210

280 | Laboratory 13

Operations
WtGraph (int maxNumber = defMaxGraphSize)

throw (bad_alloc)

Requirements:
None

Results:
Constructor. Creates an empty graph. Allocates enough memory for a graph containing
maxNumber vertices.

~WtGraph ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a graph.

void insertVertex (Vertex newVertex) throw (logic_error)

Requirements:
Graph is not full.

Results:
Inserts newVertex into a graph. If the vertex already exists in the graph, then updates
it.

void insertEdge (char *v1, char *v2, int wt)
throw (logic_error)

Requirements:
Graph includes vertices v1 and v2.

Results:
Inserts an undirected edge connecting vertices v1 and v2 into a graph. The weight of
the edge is wt. If there is already an edge connecting these vertices, then updates the
weight of the edge.

bool retrieveVertex (char *v, Vertex &vData) const

Requirements:
None

Results:
Searches a graph for vertex v. If this vertex is found, then copies the vertex’s data to
vData and returns true. Otherwise, returns false with vData undefined.

Weighted Graph ADT | 281

bool getEdgeWeight (char *v1, char *v2, int &wt) const
throw (logic_error)

Requirements:
Graph includes vertices v1 and v2.

Results:
Searches a graph for the edge connecting vertices v1 and v2. If this edge exists, then
returns true with wt returning the weight of the edge. Otherwise, returns false with
wt undefined.

void removeVertex (char *v) throw (logic_error)

Requirements:
Graph includes vertex v.

Results:
Removes vertex v from a graph.

void removeEdge (char *v1, char *v2) throw (logic_error)

Requirements:
Graph includes vertices v1 and v2.

Results:
Removes the edge connecting vertices v1 and v2 from a graph.

void clear ()

Requirements:
None

Results:
Removes all the vertices and edges in a graph.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a graph is empty (no vertices). Otherwise, returns false.

bool isFull () const

Requirements:
None

Results:
Returns true if a graph is full. Otherwise, returns false.

282 | Laboratory 13

void showStructure () const

Requirements:
None

Results:
Outputs a graph with the vertices in array form and the edges in adjacency matrix
form (with their weights). If the graph is empty, outputs “Empty graph”. Note that this
operation is intended for testing/debugging purposes only.

Weighted Graph ADT | 283

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 13: Cover Sheet

Weighted Graph ADT | 285

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 13: Prelab Exercise

Weighted Graph ADT | 287

Name __ Date _______________________

Section ___

You can represent a graph in many ways. In this laboratory you will use an array to store the set
of vertices and an adjacency matrix to store the set of edges. An entry (j,k) in an adjacency matrix
contains information on the edge that goes from the vertex with index j to the vertex with index
k. For a weighted graph, each matrix entry contains the weight of the corresponding edge. A
specially chosen weight value is used to indicate edges that are missing from the graph.

The following graph yields the vertex list and adjacency matrix shown below. A ‘–’ is used to
denote an edge that is missing from the graph.

Vertex list Adjacency matrix

Index Label From\To 0 1 2 3 4

0 A 0 — 50 100 — —

1 B 1 50 — — 93 —

2 C 2 100 — — 112 210

3 D 3 — 93 112 — 87

4 E 4 — — 210 87 —

Vertex A has an array index of 0 and vertex C has an array index of 2. The weight of the edge
from vertex A to vertex C is therefore stored in entry (0,2) in the adjacency matrix.

Step 1: Implement the operations in the Weighted Graph ADT using an array to store the vertices
(vertexList) and an adjacency matrix to store the edges (adjMatrix). The number of
vertices in a graph is not fixed; therefore, you need to store the maximum number of
vertices the graph can hold (maxSize) as well as the actual number of vertices in the
graph (size). Base your implementation on the following declarations from the file
wtgraph.h. An implementation of the showStructure operation is given in the file
show13.cpp.

B

A E

D

C

100

50

112

93

87

210

const int defMaxGraphSize = 10, // Default number of vertices
vertexLabelLength = 11, // Length of a vertex label
infiniteEdgeWt = INT_MAX; // “Weight” of a missing edge

class Vertex
{
public:

char label [vertexLabelLength]; // Vertex label
};

class WtGraph
{
public:

// Constructor
WtGraph (int maxNumber = defMaxGraphSize)

throw (bad_alloc);

// Destructor
~WtGraph ();

// Graph manipulation operations
void insertVertex (Vertex newVertex) // Insert vertex

throw (logic_error);
void insertEdge (char *v1, char *v2, int wt) // Insert edge

throw (logic_error);
bool retrieveVertex (char *v, Vertex &vData);

// Get vertex
bool getEdgeWeight (char *v1, char *v2, int &wt)

throw (logic_error); // Get edge wt.
void removeVertex (char *v) // Remove vertex

throw (logic_error);
void removeEdge (char *v1, char *v2) // Remove edge

throw (logic_error);
void clear (); // Clear graph

// Graph status operations
bool isEmpty () const; // Graph is empty
bool isFull () const; // Graph is full

// Output the graph structure — used in testing/debugging
void showStructure ();

private:

// Facilitator functions
int getIndex (char *v); // Converts vertex label to

// an adjacency matrix
// index

int getEdge (int row, int col); // Get edge weight using
void setEdge (int row, int col, int wt); // Set edge weight using

// adjacency matrix
// indices

288 | Laboratory 13

// Data members
int maxSize, // Maximum number of vertices in the graph

size; // Actual number of vertices in the graph
Vertex *vertexList; // Vertex list
int *adjMatrix; // Adjacency matrix

};

Your implementations of the public member functions should use your getEdge() and
setEdge() facilitator functions to access entries in the adjacency matrix. For
example, the assignment statement

setEdge(2,3, 100);

uses the setEdge() function to assign a weight of 100 to the entry in the second row,
third column of the adjacency matrix. The if statement

if (getEdge(j,k) == infiniteEdgeWt)
cout << “Edge is missing from graph” << endl;

uses this function to test whether there is an edge connecting the vertex with index j
and the vertex with index k.

Step 2: Save your implementation of the Weighted Graph ADT in the file
wtgraph.cpp. Be sure to document your code.

Weighted Graph ADT | 289

Laboratory 13: Bridge Exercise

290 | Laboratory 13

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program in the file test13.cpp allows you to interactively test your implementation of
the Weighted Graph ADT using the following commands.

Command Action

+v Insert vertex v.
=v w wt Insert an edge connecting vertices v and w. The weight of this edge is wt.

?v Retrieve vertex v.
#v w Retrieve the edge connecting vertices v and w and output its weight.
-v Remove vertex v.
!v w Remove the edge connecting vertices v and w.
E Report whether the graph is empty.
F Report whether the graph is full.
C Clear the graph.
Q Quit the test program.

Note that v and w denote vertex labels (type char*), not individual characters (type char). As a
result, you must be careful to enter these commands using the exact format shown above—
including spaces.

Step 1: Prepare a test plan for your implementation of the Weighted Graph ADT. Your test plan
should cover graphs in which the vertices are connected in a variety of ways. Be sure to
include test cases that attempt to retrieve edges that do not exist or that connect
nonexistent vertices. A test plan form follows.

Step 2: Execute your test plan. If you discover mistakes in your implementation, correct them
and execute your test plan again.

Test Plan for the Operations in the Weighted Graph ADT
Test Case Commands Expected Result Checked

Weighted Graph ADT | 291

Laboratory 13: In-lab Exercise 1

292 | Laboratory 13

Name __ Date _______________________

Section ___

In many applications of weighted graphs, you need to determine not only whether there is an edge
connecting a pair of vertices, but whether there is a path connecting the vertices. By extending the
concept of an adjacency matrix, you can produce a path matrix in which an entry (j,k) contains
the cost of the least costly (or shortest) path from the vertex with index j to the vertex with index
k. The following graph yields the path matrix shown below.

Vertex list Path matrix

Index Label From/To: 0 1 2 3 4

0 A 0 0 50 100 143 230

1 B 1 50 0 150 93 180

2 C 2 100 150 0 112 199

3 D 3 143 93 112 0 87

4 E 4 230 180 199 87 0

This graph includes a number of paths from vertex A to vertex E. The cost of the least costly path
connecting these vertices is stored in entry (0,4) in the path matrix, where 0 is the index of vertex
A and 4 is the index of vertex E. The corresponding path is ABDE.

In creating this path matrix, we have assumed that a path with cost 0 exists from a vertex to
itself (entries of the form (j, j)). This assumption is based on the view that traveling from a vertex
to itself is a nonevent and thus costs nothing. Depending on how you intend to apply the
information in a graph, you may want to use an alternative assumption.

Given the adjacency matrix for a graph, we begin construction of the path matrix by noting
that all edges are paths. These one-edge-long paths are combined to form two-edge-long paths by
applying the following reasoning.

B

A E

D

C

100

50

112

93

87

210

If there exists a path from a vertex j to a vertex m and
there exists a path from a vertex m to a vertex k,

then there exists a path from vertex j to vertex k.

We can apply this same reasoning to these newly generated paths to form paths
consisting of more and more edges. The key to this process is to enumerate and
combine paths in a manner that is both complete and efficient. One approach to this
task is described in the following algorithm, known as Warshall’s algorithm. Note that
variables j, k, and m refer to vertex indices, not vertex labels.

Initialize the path matrix so that it is the same as the edge
matrix (all edges are paths). In addition, create a path with
cost 0 from each vertex back to itself.

for (m = 0 ; m < size ; m++)
for (j = 0 ; j < size ; j++)

for (k = 0 ; k < size ; k++)
If there exists a path from vertex j to vertex m and

there exists a path from vertex m to vertex k,
then add a path from vertex j to vertex k to the path matrix.

This algorithm establishes the existence of paths between vertices but not their
costs. Fortunately, by extending the reasoning used above, we can easily determine the
costs of the least costly paths between vertices.

If there exists a path from a vertex j to a vertex m and
there exists a path from a vertex m to a vertex k and
the cost of going from j to m to k is less than entry (j,k) in
the path matrix,

then replace entry (j,k) with the sum of entries (j,m) and (m,k).

Incorporating this reasoning into the previous algorithm yields the following
algorithm, known as Floyd’s algorithm.

Initialize the path matrix so that it is the same as the edge
matrix (all edges are paths). In addition, create a path with
cost 0 from each vertex back to itself.

for (m = 0 ; m < size ; m++)
for (j = 0 ; j < size ; j++)

for (k = 0 ; k < size ; k++)
If there exists a path from vertex j to vertex m and

there exists a path from vertex m to vertex k and
the sum of entries (j,m) and (m,k) is less than entry

(j,k) in the path matrix,
then replace entry (j,k) with the sum of entries (j,m)

and (m,k).

The following Weighted Graph ADT operation computes a graph’s path matrix.

Weighted Graph ADT | 293

void computePaths ()

Requirements:
None

Results:
Computes a graph’s path matrix.

Step 1: Add the data member

int *pathMatrix; // Path matrix

and the function prototype

void computePaths (); // Computes path matrix

to the WtGraph class declaration in the file wtgraph.h.

Step 2: Implement the computePaths operation described above and add it to the
file wtgraph.cpp.

Step 3: Replace the showStructure() function in the file wtgraph.cpp with a
showStructure() function that outputs a graph’s path matrix in addition to
its vertex list and adjacency matrix. An implementation of this function is
given in the file show14.cpp.

Step 4: Activate the “PM” (path matrix) test in the test program test13.cpp by
removing the comment delimiter (and the characters “PM”) from the lines that
begin with “//PM”.

Step 5: Prepare a test plan for the computePaths operation that includes graphs in
which the vertices are connected in a variety of ways with a variety of
weights. Be sure to include test cases in which an edge between a pair of
vertices has a higher cost than a multiedge path between these same vertices.
The edge CE and the path CDE in the graph shown earlier have this property.
A test plan form follows.

Step 6: Execute your test plan. If you discover mistakes in your implementation of
the computePaths operation, correct them and execute your test plan again.

294 | Laboratory 13

Test Plan for the computePaths Operation
Test Case Commands Expected Result Checked

Weighted Graph ADT | 295

Laboratory 13: In-lab Exercise 2

296 | Laboratory 13

Name __ Date _______________________

Section ___

Suppose you wish to create a road map of a particular highway network. To avoid causing
confusion among map users, you must be careful to color the cities in such a way that no cities
sharing a common border also share the same color. An assignment of colors to cities that meets
this criterion is called a proper coloring of the map.

Restating this problem in terms of a graph, we say that an assignment of colors to the vertices
in a graph is a proper coloring of the graph if no vertex is assigned the same color as an adjacent
vertex. The assignment of colors (gray and white) shown in the following graph is an example of a
proper coloring.

Two colors are not always enough to produce a proper coloring. One of the most famous
theorems in graph theory, the Four-Color Theorem, states that creating a proper coloring of any
planar graph (that is, any graph that can be drawn on a sheet of paper without having the edges
cross one another) requires using at most four colors. A planar graph that requires four colors is
shown below. Note that if a graph is not planar, you may need to use more than four colors.

A B

C D

B

F

C

The following Weighted Graph ADT operation determines whether a graph has a
proper coloring.

bool hasProperColoring () const

Requirements:
All the vertices have been assigned a color.

Results:
Returns true if no vertex in a graph has the same color as an adjacent vertex.
Otherwise, returns false.

Step 1: Add the following data member to the Vertex class declaration in the file
wtgraph.h.

char color; // Vertex color (‘r’ for red and so forth)

Add the following function prototype to the WtGraph class declaration in the
file wtgraph.h.

bool hasProperColoring () const; // Proper coloring?

Step 2: Implement the hasProperColoring operation described above and add it to
the file wtgraph.cpp.

Step 3: Replace the showStructure() function in the file wtgraph.cpp with a
showStructure() function that outputs a vertex’s color in addition to its
label. An implementation of this function is given in the file show13.cpp.

Step 4: Activate the “P” (proper coloring) command in the test program test13.cpp by
removing the comment delimiter (and the characters “PC”) from the lines that
begin with “//PC”.

Step 5: Prepare a test plan for the properColoring operation that includes a variety
of graphs and vertex colorings. A test plan form follows.

Step 6: Execute your test plan. If you discover mistakes in your implementation of
the properColoring operation, correct them and execute your test plan
again.

Weighted Graph ADT | 297

Test Plan for the properColoring Operation
Test Case Commands Expected Result Checked

298 | Laboratory 13

Laboratory 13: In-lab Exercise 3

Weighted Graph ADT | 299

Name __ Date _______________________

Section ___

A communications network consists of a set of switching centers (vertices) and a set of
communications lines (edges) that connect these centers. When designing a network, a
communications company needs to know whether the resulting network will continue to support
communications between all centers should one of these communications lines be rendered
inoperative due to weather or equipment failure. That is, they need to know the answer to the
following question.

Given a graph in which there is a path from every vertex to every other vertex, will removing any edge
from the graph always produce a graph in which there is still a path from every vertex to every other
vertex?

Obviously, the answer to this question depends on the graph. The answer for the graph shown
below is yes.

On the other hand, you can divide the following graph into two disconnected subgraphs by
removing the edge connecting vertices D and E. Thus, for this graph the answer is no.

Although determining an answer to this question for an arbitrary graph is somewhat difficult,
there are certain classes of graphs for which the answer is always yes. Given the definitions:

• A graph G is said to be connected if there exists a path from every vertex in G to every other
vertex in G.

• The degree of a vertex V in a graph G is the number of edges in G which connect to V, where
an edge from V to itself counts twice.

A B

C

G

HD

E

F

A B

C D

E

F

The following rule can be derived using simple graph theory:

If all of the vertices in a connected graph are of even degree, then removing any one edge
from the graph will always produce a connected graph.

If this rule applies to a graph, then you know that the answer to the previous question
is yes for that graph. Note that this rule tells you nothing about connected graphs in
which the degree of one or more vertices is odd.

The following Weighted Graph ADT operation checks whether every vertex in a
graph is of even degree.

bool areAllEven () const

Requirements:
None

Results:
Returns true if every vertex in a graph is of even degree. Otherwise, returns false.

Step 1: Implement the areAllEven operation described above and add it to the file
wtgraph.cpp. A prototype for this operation is included in the declaration of
the WtGraph class in the file wtgraph.h.

Step 2: Activate the ‘D’ (degree) command in the test program test13.cpp by
removing the comment delimiter (and the character ‘D’) from the lines that
begin with “//D”.

Step 3: Prepare a test plan for this operation that includes graphs in which the
vertices are connected in a variety of ways. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of
the areAllEven operation, correct them and execute your test plan again.

300 | Laboratory 13

Test Plan for the areAllEven Operation
Test Case Commands Expected Result Checked

Weighted Graph ADT | 301

Laboratory 13: Postlab Exercise 1

Weighted Graph ADT | 303

Name __ Date _______________________

Section ___

Floyd’s algorithm (In-lab Exercise 1) computes the shortest path between each pair of vertices in a
graph. Suppose you need to know not only the cost of the shortest path between a pair of vertices,
but also which vertices lie along this path. At first, it may seem that you need to store a list of
vertices for every entry in the path matrix. Fortunately, you do not need to store this much
information. For each entry (j,k) in the path matrix, all you need to know is the index of the vertex
that follows j on the shortest path from j to k—that is, the index of the second vertex on the
shortest path from j to k. The following graph, for example,

yields the augmented path matrix shown below.

Vertex list Path matrix (cost|second vertex on shortest path)

Index Label From/To 0 1 2 3 4

0 A 0 0|0 50|1 100|2 143|1 230|1

1 B 1 50|0 0|1 150|0 93|3 180|3

2 C 2 100|0 150|0 0|2 112|3 199|3

3 D 3 143|1 93|1 112|2 0|3 87|4

4 E 4 230|3 180|3 199|3 87|3 0|4

Entry (0,4) in this path matrix indicates that the cost of the shortest path from vertex A to vertex E
is 230. It further indicates that vertex B (the vertex with index 1) is the second vertex on the
shortest path. Thus the shortest path is of the form AB . . . E.

Explain how you can use this augmented path matrix to list the vertices that lie along the
shortest path between a given pair of vertices.

B

A E

D

C

100

50

112

93

87

210

Laboratory 13: Postlab Exercise 2

Weighted Graph ADT | 305

Name __ Date _______________________

Section ___

Give an example of a graph for which no proper coloring can be created using less than five colors
(see In-lab Exercise 2). Does your example contradict the Four-Color Theorem?

In this laboratory you will:

Implement the Hash Table ADT using an array of lists
representation

Use a hash table to implement a password-based
authentication system

Implement a perfect hash to store selected C++
reserved words

Implement a standard deviation analysis operation to
analyze the uniformity of the key distribution

Analyze the efficiency of your implementation of the
Hash Table ADT

Hash Table ADT

O
bjectives

Overview

The data structures you have implemented up to this point are all useful and widely
used. However, their average performance for insertion and retrieval is generally O(N),
or at best O(log2N). As N becomes large—large is a relative term, depending on current
hardware configuration and performance, data record size and a number of other
factors, but let’s say hundreds of thousands or millions of records—O(N) becomes a
poor choice. Even O(log2N) performance can be unacceptable when handling many
simultaneous queries or processing large reports. How does searching, inserting, and
retrieving in O(1) sound? That is the possibility that the Hash Table ADT tries to offer.
Hash tables are among the fastest data structures for most operations and come closest
to offering O(1) performance. Consequently, a hash table is the preferred data structure
in many contexts. For instance, most electronic library catalogs are based on hash
tables.

The goal of the ideal hash table is to come up with a unique mapping of each key
onto a specific location in an array. The mapping of the key to a specific location in an
array is handled by the hash operation. A hash operation will accept the key as input
and return an integer that is used as an index into the hash table.

How does this work? The simplest case occurs when the key is an integer. Then the
hash function could simply return an integer. For instance, given the key 3, the hash
function would return the index value 3 to place the record in the hash table position
3. The key 1 would be used to place the record in hash table position 1.

Index 0 1 2 3 4 5 6

Key 1 3

But what about a key value of 8? The array used to implement the hash table does not
have a valid position 8, so some set of operations must be performed on the key in
order to map it to an index value that is valid for the array. A simple solution to this
problem is to perform a modulus operation with the table size on the key value. Using
the example of 8 for the table of size 7 above, the hash function would calculate 8
modulus 7 to produce an index value of 1.

Unfortunately, it is easy for the hash calculation to generate the same index value
for more than one key. This is called a collision. Using a key of 10 in the example
above, the hash calculation would produce 3—calculated as 10 modulus 7 (10%7 in
C++). But position 3 already has a key associated with it—the key 3. There are a
number of methods that can be used to resolve the collision. The one we use is called
chaining. When using chaining, all the keys that generate a particular index are
connected to that array position in a chain. One way to implement chaining is by
associating a list with each table entry. Using this approach, position 0 in the hash
table would have a list of all data items for which the hash operation produces an
index of 0, position 1 would have a list of all data items associated with index 1, and
so on through index 6. The key values 1, 3, 7, 8, 10, and 13 would produce the
following chains associated with the indexes 0, 1, 3, and 6.

Index 0 1 2 3 4 5 6

Key 7 1 3 13

8 10

308 | Laboratory 14

Generating an index for other key types is more complicated than generating an
index for integers. For instance, if the key for a record is a string, the string could be
mapped to an integer by adding up the ASCII values of each of the characters in the
string. Given a last name of “smith”, the function could calculate a value of 115 (‘s’) +
109 (‘m’) + 105 (‘i’) + 116 (‘t’) + 104 (‘h’) = 549. Real numbers can be mapped to
integers by simply truncating the noninteger part.

Note that these are simple examples of hash operations intended as an
introduction to hash tables. A more detailed explanation would go into great detail
about how to take a key and move the bits around to produce a high-quality key that
will ensure a fairly uniform distribution of data items throughout the table. See In-lab
3 for more detail.

Hash Table ADT

Data Items
The data items in a hash table are of generic type DT.

Structure
The hash table is an array of singly linked lists. The list into which a data item is
placed is determined by the index calculated using the data item’s hash operation. The
placement within a particular list is determined by the chronological order in which
the data items are inserted into the list—the earliest insertion takes place at the head of
the list, the most recent at the end of the list. The ordering within a particular list is not
a function of the data contained in the hash table data items. You interact with each
list by using the standard list operations.

Operations
HashTbl (int initTableSize) throw (bad_alloc)

Requirements:
None

Results:
Constructor. Creates the empty hash table.

~HashTbl ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a list.

Hash Table ADT | 309

void insert (const DT &newDataItem) throw (bad_alloc)

Requirements:
Hash table is not full.

Results:
Inserts newDataItem into the appropriate list. If a data item with the same key as
newDataItem already exists in the list, then updates that data item’s nonkey fields
with newDataItem’s nonkey fields. Otherwise, it inserts it at the end of that list.

bool remove (KF searchKey)

Requirements:
None

Results:
Searches the hash table for the data item with key searchKey. If the data item is
found, then removes the data item and returns true. Otherwise, returns false.

bool retrieve (KF searchKey, DT &dataItem)

Requirements:
None

Results:
Searches the hash table for the data item with key searchKey. If the data item is
found, then copies the data item to dataItem and returns true. Otherwise, returns
false with dataItem undefined.

void clear ()

Requirements:
None

Results:
Removes all data items in the hash table.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a hash table is empty. Otherwise, returns false.

bool isFull () const

Requirements:
None

Results:
Returns true if a hash table is full. Otherwise, returns false.

310 | Laboratory 14

void showStructure () const

Requirements:
None

Results:
Outputs the data items in a hash table. If the hash table is empty, outputs “Empty hash
table”. Note that this operation is intended for testing/debugging purposes only. It
supports only list data items that are one of C++’s predefined data types (int, char,
and so forth).

Hash Table ADT | 311

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory 14: Cover Sheet

Hash Table ADT | 313

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory 14: Prelab Exercise

Hash Table ADT | 315

Name __ Date _______________________

Section ___

You can implement a hash table in many ways. We have chosen to implement the hash table using
chaining to resolve collisions. The singly linked list ADT provides a simple way of dealing with a
chain of data items and is an opportunity to use one of your ADTs to implement another ADT.
Your instructor may choose to let you use one of the STL (Standard Template Library) lists instead.

Step 1: Implement the operations in the Hash Table ADT using an array of lists to store the list
data items. You need to store the number of hash table slots (tableSize) and the actual
hash table itself (dataTable). Base your implementation on the following declarations
from the file hashtbl.h. An implementation of the showStructure operation is given in
the file show14.cpp. If you are using an STL list, modify the showStructure operation
to work with that STL list.

template < class DT, class KF >
class HashTbl
{

public:
HashTbl (int initTableSize);
~HashTbl ();

void insert (const DT &newDataItem) throw (bad_alloc);
bool remove (KF searchKey);
bool retrieve (KF searchKey, DT &dataItem);
void clear ();

bool isEmpty () const;
bool isFull () const;

void showStructure () const;
private:

int tableSize;
List<DT> *dataTable;

};

Step 2: Save your implementation of the Hash Table ADT in the file hashtbl.cpp. Be sure to
document your code.

The following program was adapted from the Lab 4 (Ordered List ADT) prelab. It reads in
account numbers and balances for a set of accounts. It then tries retrieving records using the
account numbers as the keys. The primary change is that the Account struct needs to have a
hash() function added to be usable with the hash table. We also removed the code outputting the
accounts in ascending order based on their account numbers because an ordered traversal of the
hash table is not something supported by this Hash Table ADT.

// lab14-example1.cpp
#include <iostream>
#include <cmath>
#include “hashtbl.cpp”

using namespace std;

struct Account
{

int acctNum; // (Key) Account number
float balance; // Account balance

int getKey () const { return acctNum; }
int hash(int key) const { return abs(key); }

};

void main()
{

HashTbl<Account,int> accounts(11); // List of accounts
Account acct; // A single account
int searchKey; // An account key

// Read in information on a set of accounts.

cout << endl << “Enter account information for 5 accounts: ”
<< endl;

for (int i = 0; i < 5; i++)
{

cin >> acct.acctNum >> acct.balance;
accounts.insert(acct);

}

// Checks for accounts and prints records if found

cout << endl;
cout << “Enter account number: ”;
while (cin >> searchKey)
{

if (accounts.retrieve(searchKey,acct))
cout << acct.acctNum << “ ” << acct.balance << endl;

else
cout << “Account ” << searchKey << “ not found.” << endl;

}
};

316 | Laboratory 14

Laboratory 14: Bridge Exercise

Hash Table ADT | 317

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program in the file test14.cpp allows you to interactively test your implementation of
the Hash Table ADT using the following commands.

Command Action

+key Insert (or update) data item with key value key.
—key Remove the data item with the key value key.
?key Retrieve the item with the specified key and output it.
E Report whether the list is empty.
F Report whether the list is full.
C Clear the list.
Q Quit the test program.

Step 1: Prepare a test plan for your implementation of the Hash Table ADT. Your test plan should
cover the application of each operation. A test plan form follows.

Step 2: Execute your test plan. If you discover mistakes in your implementation, correct them
and execute your test plan again.

Test Plan for the Operations in the Hash Table ADT
Test Case Commands Expected Result Checked

318 | Laboratory 14

Laboratory 14: In-lab Exercise 1

Hash Table ADT | 319

Name __ Date _______________________

Section ___

One possible use for a hash table is to store computer user login usernames and passwords. Your
program should load username/password sets from the file password.dat and insert them into the
hash table until the end of file is reached on password.dat. There is one username/password set per
line, as shown in the following example.

jack
broken.crown
jill
tumblin’down
mary contrary
bopeep sheep!lost

Your program will then present a login prompt, read one username, present a password prompt,
read the password, and then print either “Authentication successful” or “Authentication failure”, as
shown in the following examples.

Login: jack

Password: broken.crown

Authentication successful

Login: jill

Password: tumblingdown

Authentication failure

This authentication loop is to be repeated until the end of input data (EOF) is reached on the
console input stream (cin).

Step 1: Prepare a test plan that specifies how you will validate that your program works
correctly.

Step 2: Create a program that will read in the usernames and passwords from password.dat and
then allow the user to try authenticating usernames and passwords as shown so long as
the user enters more data. Store your program in the file login.cpp.

Create an appropriate struct to hold the username/password sets in the hash table.

Step 3: Run your program and test according to your test plan. If you discover
mistakes, correct them and execute your test plan again.

Test Plan for the Login Authentication Program
Test Case Expected Result Checked

320 | Laboratory 14

Laboratory 14: In-lab Exercise 2

Hash Table ADT | 321

Name __ Date _______________________

Section ___

A hash table insertion or retrieval with no collisions is an O(1) operation. Collisions reduce the O(1)
behavior to something less desirable. There are two ways to reduce collisions:

• Increase the size of the table. As the table size increases, the statistical probability of collisions
for unique keys decreases. The problem with arbitrarily increasing the table size is that the
amount of physical memory is finite and to declare a wildly large table in the hope of
reducing collisions wastes memory.

• Enhance the quality of the hash() function so that it produces fewer collisions. Ideally,
unique keys have unique indexes into the hash table and no collisions. This is called a perfect
hash. The problem with generating perfect hash tables is that the hash function must be
carefully crafted to avoid collisions.

A minimal perfect hash is a hash table with the following two properties:

• The minimal property—the memory allocated to store the keywords is exactly large enough to
hold the needed number of keys and no more. For n keys, there are exactly n table entries.

• The perfect property—locating a table entry requires at most one key comparison. There are no
collisions. Consequently, no collision resolution is required.

Software developers like minimal perfect hash tables for specific sets of strings because of the
performance boost. For instance, it is very helpful if a C++ compiler can perform an O(1) lookup
on a string to determine whether it is a C++ reserved word.

Step 1: Develop a hash() function implementation that will produce a minimal perfect hash for
the following seven C++ reserved words.

• double

• else

• if

• return

• switch

• void

• while

Use the following struct to hold the strings.

struct Identifier
{

string ident;
string getKey() const

{ return ident; }
int hash(string key) const

{ return . . . }
};

Step 2: Prepare a test plan that specifies how you will verify that your hash()
function works correctly to generate a minimal perfect hash table.

Step 3: Implement a test program using the above struct to demonstrate that you
have indeed developed a minimal perfect hash for the given seven C++
identifiers. Save your program in the file perfect.cpp. Use the provided
showStructure() function to display the hash table after all the data has
been entered.

Step 4: Execute your test program and consider the results according to your test
plan. If you discover mistakes in your implementation of the hash()
function, correct them and execute your test plan again.

Test Plan for the hash() function
Hash Formula Expected Result Checked

322 | Laboratory 14

Laboratory 14: In-lab Exercise 3

Hash Table ADT | 323

Name __ Date _______________________

Section ___

Performance of hash tables depends on how uniformly the keys are distributed among the table
entries. In the ideal situation—a minimal perfect hash (see In-Lab Exercise 2)—there is exactly one
data item per hash table entry. Unfortunately, minimal perfect hashes become progressively more
difficult to generate as the number of data items increases. In the worst possible key distribution
scenario, all the data items would be chained off one hash table entry and all the other table
entries would be empty. This is essentially a list, and the performance benefits of the hash table are
lost. Rather than try to develop a perfect hash, developers usually build a hash function that will
attempt to distribute the keys uniformly across all the table entries. Each table entry will have the
same—or almost the same—number of keys associated with it.

Suppose that you have developed a hash function that you believe does a satisfactory job of
distributing keys over the table. A good question to ask is “How uniform a distribution is the hash
function achieving?” The formal mathematical answers are beyond the scope of this lab manual.
However, one simple way of calculating this is to calculate the standard deviation of the number
of data items associated with each table entry. The standard deviation number does not claim to
answer whether or not a particular hash operation is good or bad, but it can be used as a rough
comparison among hash functions used with the same table size and set of keys. The smaller the
number obtained, the closer the hash function comes to providing a uniform distribution.

The formula to calculate the standard deviation, s, is

s =
√∑

(x − x)2

n − 1

where x represents the number of data items chained off the current table location, x represents the
average number of data items chained off each table location, and n represents the number of
array entries in the table.

Standard deviation is calculated as follows:

1. Calculate and save the average—or mean—number of data items per table entry.
2. For each table entry, calculate and save (number of items � mean number of items)2.
3. Calculate the sum of all the values calculated in step 2.
4. Divide the result from step 3 by n � 1, where n is the number of hash table entries.
5. Calculate the square root of the result obtained in step 4. This is the standard deviation.

Implement the following new Hash Table ADT operation—stdDeviation—that will calculate the
standard deviation for key distribution in the hash table.

double stdDeviation ()

Requirements:
None

Results:
Computes the standard deviation for key distribution in the hash table and returns the
result.

Step 1: Implement this operation and add it to the file hashtbl.cpp. A prototype for
this operation is included in the declaration of the Hash Table class in the file
hashtbl.h.

Step 2: The program in the file tst14std.cpp will read data into a hash table and test
your stdDeviation operation. It has three predefined hash function algorithms
defined. All but the first algorithm are initially commented out. Please take a
moment to study the three hash algorithms. Compile the program, run it, and
record the results for Hash Algorithm 1 in the data table that follows in the
lab book.

Step 3: Comment out Hash Algorithm #1 and uncomment Hash Algorithm #2. Repeat
the directions in Step 2, filling in the data table entries for Hash Algorithm
#2. Then do the same for Hash Algorithm #3.

Step 4: Invent two hash algorithms and enter them under Hash Algorithm #4 and
Hash Algorithm #5. Repeat the compile-run-record cycle for both of them.

Step 5: Which of the hash algorithms that you tested produced the best result? What
was the best hash algorithm produced by someone in your class? Why did the
better algorithms produce superior results? Discuss the results with your lab
instructor.

324 | Laboratory 14

Data Table for the stdDeviation Operation
Expected relative Measured relative
distribution quality Standard distribution quality

Hash algorithm used (good/fair/poor) deviation (good/fair/poor)

Hash Algorithm #1

return 0;

Hash Algorithm #2

return int(str[0])*10 +

str.length();

Hash Algorithm #3

double val = 0;

for (int i=0;

i<str.length();

i++)

{ val += (val*1.1)+str[i];}

return int(val);

Hash Algorithm #4

Hash Algorithm #5

Hash Table ADT | 325

Laboratory 14: Postlab Exercise 1

Hash Table ADT | 327

Name __ Date _______________________

Section ___

Part A
Given a hash table of size T, containing N data items, develop worst-case, order-of-magnitude
estimates of the execution time of the following Hash Table ADT operations, assuming they are
implemented using singly linked lists for the chained data items and a reasonably uniform
distribution of data item keys. Briefly explain your reasoning behind each estimate.

insert O()

Explanation:

retrieve O()

Explanation:

Part B
What if the chaining is implemented using a binary search tree instead of a singly linked list?
Using the same assumptions as above, develop worst-case, order-of-magnitude estimates of the
execution time of the following Hash Table ADT operations. Briefly explain your reasoning behind
each estimate.

insert O()

Explanation:

retrieve O()

Explanation:

328 | Laboratory 14

Laboratory 14: Postlab Exercise 2

Hash Table ADT | 329

Name __ Date _______________________

Section ___

Part A
For some large number of data items (e.g., N = 1,000,000), would you rather use a binary search
tree or a hash table for performing data retrieval? Explain your reasoning.

Part B
Assuming the same number of data items given above, would the binary search tree or the hash
table be most memory efficient? Explain your assumptions and your reasoning.

Part C
If you needed to select either the binary search tree or the hash table as the best general-purpose
data structure, which would you choose? Under what circumstances would you choose the other
data structure as preferable? Explain your reasoning.

330 | Laboratory 14

In this laboratory you will:

Examine the flaws in the standard C and early C++
string representation

Implement a more robust string data type

Use the C++ operators new and delete to
dynamically allocate and deallocate memory

Create a program that performs lexical analysis using
your new string data type

Analyze the limitations of the default copy
constructor and develop an improved copy
constructor

String ADT

O
bjectives

Overview

When computers were first introduced, they were popularly characterized as giant
calculating machines. As you saw in your introductory programming course, this
characterization ignores the fact that computers are equally adept at manipulating
other forms of information, including alphanumeric characters.

C++ supports the manipulation of character data through the predefined data type
char and the associated operations for the input, output, assignment, and comparison
of characters. Most applications of character data require character sequences—or
strings—rather than individual characters. A string can be represented in C++ using a
one-dimensional array of characters. By convention, a string begins in array data item
zero and is terminated by the null character (‘\0’). (That is how C and original C++
represented strings. Although C++ now has a standard string class, many current
programming APIs—Application Programming Interfaces—require a knowledge of the C
string representation.)

Representing a string as an array of characters terminated by a null suffers from
several defects, including the following:

• The subscript operator ([]) does not check that the subscript lies within the
boundaries of the string—or even within the boundaries of the array holding the
string, for that matter.

• Strings are compared using functions that have far different calling conventions
than the familiar relational operators (==, <, >, and so forth).

• The assignment operator (=) simply copies a pointer, not the character data it
points to. The code fragment below, for example, makes str2 point to the array
already pointed to by str1. It does not create a new array containing the string
“data”.

char *str1 = “data”,
*str2;

str2 = str1;

Either the length of a string must be declared at compile-time or a program must
explicitly allocate and deallocate the memory used to store a string. Declaring the
length of a string at compile-time is often impossible, or at least inefficient. Allocating
and deallocating the memory used by a string dynamically (that is, at run-time) allows
the string length to be set (or changed) as a program executes. Unfortunately, it is very
easy for a programmer to forget to include code to deallocate memory once a string is
no longer needed. Memory lost in this way—called a memory leak—accumulates over
time, gradually crippling or even crashing a program. This will eventually require the
program or computer system to be restarted.

In this laboratory you will develop a String ADT that addresses these problems.
The following String ADT specification includes a diverse set of operations for
manipulating strings.

332 | Laboratory A

String ADT

Data Items
A set of characters, excluding the null character.

Structure
The characters in a string are in sequential (or linear) order—that is, the characters
follow one after the other from the beginning of a string to its end.

Operations
String (int numChars = 0) throw (bad_alloc)

Requirements:
None

Results:
Default constructor. Creates an empty string. Allocates enough memory for a string
containing numChars characters plus any delimiter that may be required by the
implementation of the String ADT.

String (const char *charSeq) throw (bad_alloc)

Requirements:
None

Results:
Conversion constructor. Creates a string containing the character sequence in the array
pointed to by charSeq. Assumes that charSeq is a valid C-string terminated by the
null character. Allocates enough memory for the characters in the string plus any
delimiter that may be required by the implementation of the String ADT.

~String ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a string.

int getLength () const

Requirements:
None

Results:
Returns the number of characters in a string (excluding the delimiter).

String ADT | 333

char operator [] (int n) const

Requirements:
None

Results:
Returns the nth character in a string—where the characters are numbered beginning
with zero. If the string does not have an nth character, then returns the null character.

void operator = (const String &rightString) throw (bad_alloc)

Requirements:
None

Results:
Assigns (copies) the contents of rightString to a string.

void clear ()

Requirements:
None

Results:
Clears a string, thereby making it an empty string.

void showStructure () const

Requirements:
None

Results:
Outputs the characters in a string, as well as the delimiter. Note that this operation is
intended for testing/debugging purposes only.

334 | Laboratory A

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory A: Cover Sheet

String ADT | 335

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory A: Prelab Exercise

String ADT | 337

Name __ Date _______________________

Section ___

The first decision you must make when implementing the String ADT is how to store the characters
in a string. In the Overview, you saw that original C++ represented a string as a null-terminated
sequence of characters in a one-dimensional buffer. Adopting this representation scheme allows
you to reuse existing C++ functions in your implementation of the String ADT. This code reuse, in
turn, greatly simplifies the implementation process.

Your String ADT will be more flexible if you dynamically allocate the memory used by the
string buffer. The initial memory allocation for a buffer is done by a constructor. One of the
constructors is invoked whenever a string declaration is encountered during the execution of a
program. Which one is invoked depends on whether the declaration has as its argument an integer
or a string literal. Once called, the constructor allocates a string buffer using C++’s new function.
The following constructor, for example, allocates a string buffer of bufferSize characters and
assigns the address of the string buffer to the pointer buffer, where buffer is of type char*.

String:: String (int numChars)
{

...
buffer = new char [bufferSize];

}

Whenever you allocate memory, you must ensure that it is deallocated when it is no longer
needed. The class destructor is used to deallocate a string buffer. This function is invoked
whenever a string variable goes out of scope—that is, whenever the function containing the
corresponding variable declaration terminates. The fact that the call to the destructor is made
automatically eliminates the possibility of you forgetting to deallocate the buffer. The following
destructor frees the memory used by the string buffer allocated above.

String:: ~String ()
{

...
delete [] buffer;

}

Constructors and destructors are not the only operations that allocate and deallocate memory. The
assignment operation also may need to perform memory allocation/deallocation in order to extend
the length of a string buffer to accommodate additional characters.

Strings can be of various lengths, and the length of a given string can change as a result of an
assignment. Your string representation should account for these variations in length by storing the
length of a string (bufferSize) along with a pointer to the buffer containing the characters in the
string (buffer). The resulting string representation is described by the following declarations:

int bufferSize; // Size of the string buffer
char *buffer; // String buffer containing a null-terminated

// sequence of characters

Step 1: Implement the operations in the String ADT using this string representation
scheme. Base your implementation on the following class declaration from
the file stradt.h.

class String
{
public:

// Constructors
String (int numChars = 0)

throw (bad_alloc); // Create an empty string
String (const char *charSeq)

throw (bad_alloc); // Initialize using char*

// Destructor
~String ();

// String operations
int getLength () const; // # characters
char operator [] (int n) const; // Subscript
void operator = (const String &rightString) // Assignment

throw (bad_alloc);
void clear (); // Clear string

// Output the string structure — used in testing/debugging
void showStructure () const;

private:

// Data members
int bufferSize; // Size of the string buffer
char *buffer; // String buffer containing a null-terminated

}; // sequence of characters

Step 2: Save your implementation of the String ADT in the file stradt.cpp. Be sure to
document your code.

338 | Laboratory A

Laboratory A: Bridge Exercise

String ADT | 339

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

Test your implementation of the String ADT using the program in the file testa.cpp. This
program supports the following tests.

Test Action

1 Tests the constructors.
2 Tests the length operation.
3 Tests the subscript operation.
4 Tests the assignment and clear operations.

Step 1: Compile your implementation of the String ADT in the file stradt.cpp.

Step 2: Compile the test program in the file testa.cpp.

Step 3: Link the object files produced by Steps 1 and 2.

Step 4: Complete the test plan for Test 1 by filling in the expected result for each string.

Step 5: Execute the test plan. If you discover mistakes in your implementation of the String ADT,
correct them and execute the test plan again.

Test Plan for Test 1 (Constructors)
Test Case String Expected Result Checked

Simple string alpha alpha

Longer string epsilon

Single-character string a

Empty string empty

Step 6: Complete the test plan for Test 2 by filling in the length of each string.

Step 7: Execute the test plan. If you discover mistakes in your implementation of the String ADT,
correct them and execute the test plan again.

Test Plan for Test 2 (length Operation)
Test Case String Expected Length Checked

Simple string alpha 5

Longer string epsilon

Single-character string a

Empty string empty

Step 8: Complete the test plan for Test 3 by filling in the character returned by
subscript operation for each value of n and the string “alpha”.

Step 9: Execute the test plan. If you discover mistakes in your implementation of the
String ADT, correct them and execute the test plan again.

Test Plan for Test 3 (subscript Operation)
Test case n Expected character Checked

Middle character 2 p

First character 0

Last character 4

Out of range 10

Step 10: Complete the test plan for Test 4 by filling in the expected result for each
assignment statement.

Step 11: Execute the test plan. If you discover mistakes in your implementation of the
String ADT, correct them and execute the test plan again.

Test Plan for Test 4 (assignment and clear Operations)
Test Case Assignment Statement Expected Result Checked

Simple assignment assignStr = alpha; alpha

Single-character string assignStr = a;

Empty string assignStr = empty;

Source string longer than assignStr = epsilon;
destination buffer

Assign to self assignStr = assignStr;

Check assignment by clearing assignStr = alpha;
destination assignStr.clear();

340 | Laboratory A

Laboratory A: In-lab Exercise 1

String ADT | 341

Name __ Date _______________________

Section ___

A compiler begins the compilation process by dividing a program into a set of delimited strings
called tokens. This task is referred to as lexical analysis. For instance, given the C++ statement,

if (j <= 10) cout << endl ;

lexical analysis by a C++ compiler produces the following ten tokens:

“if” “(” “j” “<=” “10” “)” “cout” “<<” “endl” “;”

Before you can perform lexical analysis, you need operations that support the input and output of
delimited strings. A pair of String ADT input/output operations are described below.

friend istream & operator >> (istream &input,
String &inputString)

Requirements:
The specified input stream must not be in an error state.

Returns:
Extracts (inputs) a string from the specified input stream, returns it in inputString, and returns
the resulting state of the input stream. Begins the input process by reading whitespace (blanks,
newlines, and tabs) until a non-whitespace character is encountered. This character is returned as
the first character in the string. Continues reading the string character by character until another
whitespace character is encountered.

friend ostream & operator << (ostream &output,
const String &outputString)

Requirements:
The specified output stream must not be in an error state.

Returns:
Inserts (outputs) outputString in the specified output stream and returns the resulting state of
the output stream.

Note that these operations are not part of the String class. However, they do need to have access to
the data members of this class. Thus, they are named as friends of the String class.

Step 1: The file strio.cpp contains implementations of these string input/output operations. Add
these operations to your implementation of the String ADT in the file stradt.cpp.
Prototypes for these operations are included in the declaration of String class in the file
stradt.h.

Step 2: Create a program (stored in the file lexical.cpp) that uses the operations in the
String ADT to perform lexical analysis on a text file containing a C++
program. Your program should read the tokens in this file and output each
token to the screen using the following format:

1 : [1stToken]
2 : [2ndToken]
...

This format requires that your program maintain a running count of the number of
tokens that have been read from the text file. Assume that the tokens in the text file
are delimited by whitespace—an assumption that is not true for C++ programs in
general.

Step 3: Test your lexical analysis program using the C++ program in the file
progsamp.dat. The contents of this file are shown below.

void main ()
{

int j ,
total = 0 ;
for (j = 1 ; j <= 20 ; j ++)

total += j ;
}

Test Plan for the Lexical Analysis Program
Test Case Expected Result Checked

Program in the file progsamp.dat

342 | Laboratory A

Laboratory A: In-lab Exercise 2

String ADT | 343

Name __ Date _______________________

Section ___

Whenever an argument is passed to a function using call by value, the compiler makes a copy of
the argument. The function then manipulates this copy rather than the original argument. Once the
function terminates, the copy is deleted.

How does the compiler know how to construct a copy of a particular argument? For C++’s
predefined types, this task is straightforward. The compiler simply makes a bitwise (bit by bit) copy
of the argument. Unfortunately, this approach does not work well with instances of the String
class. Consider what happens when the call

dummy(testStr);

is made to the following function:

void dummy (String valueStr);

A bitwise copy of string testStr to string valueStr copies pointer testStr.buffer to pointer
valueStr.buffer. The string buffer pointed to by testStr.buffer is not copied and there are
now two pointers to the same string buffer. As a result, changes to valueStr also change
testStr, clearly violating the constraints of call by value. In addition, when the function
terminates, the String class destructor is called to delete the copy (valueStr). As it deletes
valueStr’s string buffer, the destructor also is deleting testStr’s string buffer.

Fortunately, C++ provides us with a method for addressing this problem. We can specify
exactly how a copy is to be created by including a copy constructor in our String class. The
compiler then uses our copy constructor in place of its default (bitwise) copy constructor. A copy
constructor for the String class is described below.

String (const String &valueString) throw (bad_alloc)

Requirements:
None

Results:
Copy constructor. Creates a copy of valueString. This constructor is invoked automatically
whenever a string is passed to a function using call by value, a function returns a string, or a
string is initialized using another string.

Step 1: Implement this operation and add it to the file stradt.cpp. A prototype for this operation
is included in the declaration of the String class in the file stradt.h.

Step 2: Activate Test 5 in the test program testa.cpp by removing the comment delimiter (and the
character “5”) from the lines that begin with “//5”.

Step 3: Complete the test plan for Test 5 by filling in the expected result for each string.

Step 4: Execute the test plan. If you discover mistakes in your implementation of the
copy constructor, correct them and execute the test plan again.

Test Plan for Test 5 (Copy Constructor)
Test Case String Argument Expected Result Checked

Simple string alpha alpha

Single-character a

344 | Laboratory A

Laboratory A: In-lab Exercise 3

String ADT | 345

Name __ Date _______________________

Section ___

Most applications that use strings will at some point sort the string data into alphabetical order,
either to make their output easier to read or to improve program performance. In order to sort
strings, you first must develop relational operations that compare strings with one another.

bool operator == (const String &leftString,
const String &rightString)

Requirements:
None

Results:
Returns true if leftString is the same as rightString. Otherwise, returns false.

bool operator < (const String &leftString,
const String &rightString)

Requirements:
None

Results:
Returns true if leftString is less than rightString. Otherwise, returns false.

bool operator > (const String &leftString,
const String &rightString)

Requirements:
None

Results:
Returns true if leftString is greater than rightString. Otherwise, returns false.

All these operations require moving through a pair of strings in parallel from beginning to
end, comparing characters until a difference (if any) is found between the strings. They vary in
how they interpret this difference.

The standard C++ C-string library includes a function strcmp() that can be used to compare
strings character by character. Alternatively, you can develop your own private member function
to perform this task.

Step 1: Implement the relational operations described above using the C++ strcmp() function
(or your own private member function) as a foundation. Add your implementation of
these operations to the file stradt.cpp. Prototypes for these operations are included in the
declaration of the String class in the file stradt.h.

Step 2: Activate Test 6 in the test program testa.cpp by removing the comment
delimiter (and the character ‘6’) from the lines that begin with “//6”.

Step 3: Complete the test plan for Test 6 by filling in the expected result for each pair
of strings.

Step 4: Execute the test plan. If you discover mistakes in your implementation of the
relational operations, correct them and execute the test plan again.

Test Plan for Test 6 (Relational Operations)
Test case Pair of strings Expected result Checked

Second string greater alpha epsilon

First string greater epsilon alpha

Identical strings alpha alpha

First string embedded in second alp alpha

Second string embedded in first alpha alpha

First string is a single character a alpha

Second string is a single character alpha a

First string is empty empty alpha

Second string is empty alpha empty

Both strings are empty empty empty

346 | Laboratory A

Laboratory A: Postlab Exercise 1

String ADT | 347

Name __ Date _______________________

Section ___

In In-lab Exercise 2, you saw that a class’s default copy constructor can cause problems if the class
contains a pointer. Comment out the declaration of the copy constructor in the file stradt.h and
your implementation of this constructor in the file stradt.cpp (assuming you created one in In-lab
Exercise 2). This forces you to use the default copy constructor.

Using the default copy constructor, execute Steps 2, 3, and 4 of In-lab Exercise 2 and explain
the results below.

Laboratory A: Postlab Exercise 2

String ADT | 349

Name __ Date _______________________

Section ___

Part A
Design another operation for the String ADT and give its specification below. You need not
implement the operation, simply describe it.

Requirements:

Results:

Part B
Describe an application in which you might you use your new operation.

350 | Laboratory A

In this laboratory you will:

Create an implementation of the Heap ADT using an
array representation of a tree

Use inheritance to derive a priority queue class from
your heap class and develop a simulation of an
operating system’s task scheduler using a priority
queue

Create a heap sort function based on the heap
construction techniques used in your implementation
of the Heap ADT

Analyze where data items with various priorities are
located in a heap

Heap ADT

O
bjectives

Overview

Linked structures are not the only way in which you can represent trees. If you
take the binary tree shown below and copy its contents into an array in level order,
you produce the following array.

Examining the relationship between positions in the tree and entries in the array, you
see that if a data item is stored in entry N in the array, then the data item’s left child is
stored in entry 2N + 1, its right child is stored in entry 2N + 2, and its parent is stored
in entry (N � 1) mod 2. These mappings make it easy to move through the tree
stepping from parent to child (or vice versa).

You could use these mappings to support an array-based implementation of the
Binary Search Tree ADT. However, the result would be a tree representation in which
large areas of the array are left unused (as indicated by the “—” character in the
following array).

In this laboratory, you focus on a different type of tree called a heap. A heap is a
binary tree that meets the following conditions.

• The tree is complete. That is, every level in the tree is full, except possibly the
bottom level. If the bottom level is not full, then all the missing data items occur
on the right.

• Each data item in the tree has a corresponding priority value. For each data item
E, all of E’s descendants have priorities that are less than or equal to E’s priority.
Note that priorities are not unique.

20 72

16 31 65

92

86

43
Index Entry

0
1
2
3
4
5
6
7
8
...
14
15

43
20
72
16
31
65
86
–
–
...
–

92

Index Entry
93

82

27 75 39 18

64

0
1
2
3
4
5
6

93
82
64
27
75
39
18

352 | Laboratory B

The tree shown on the first page of this laboratory is a heap, as is the tree shown
below.

The fact that the tree is complete means that a heap can be stored in level order in
an array without introducing gaps (unused areas) in the middle. The result is a compact
representation in which you can easily move up and down the branches.

Clearly, the relationship between the priorities of the various data items in a heap
is not strong enough to support an efficient search process. Because the relationship is
simple, however, you can quickly restructure a heap after removing the highest priority
(root) data item or after inserting a new data item. As a result, you can rapidly process
the data items in a heap in descending order based on priority. This property combined
with the compact array representation makes a heap an ideal representation for a
priority queue (In-lab Exercise 1) and forms the basis for an efficient sorting algorithm
called heap sort (In-lab Exercise 2).

Heap ADT

Data Items
The data items in a heap are of generic type DT. Each data item has a priority that is
used to determine the relative position of the data item within the heap. Data items
usually include additional data. Note that priorities are not unique—it is quite likely
that several data items have the same priority. Objects of type DT must provide a
function called pty() that returns a data item’s priority. You must be able to compare
priorities using the six basic relational operators.

Structure
The data items form a complete binary tree. For each data item E in the tree, all of E’s
descendants have priorities that are less than or equal to E’s priority.

Operations
Heap (int maxNumber = defMaxHeapSize)

Requirements:
None

Results:
Constructor. Creates an empty heap. Allocates enough memory for a heap containing
maxNumber data items.

72 34

26 66 9

72

Heap ADT | 353

~Heap ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a heap.

void insert (const DT &newDataItem) throw (logic_error)

Requirements:
Heap is not full.

Results:
Inserts newDataItem into a heap. Inserts this data item as the bottom rightmost data
item in the heap and moves it upward until the properties that define a heap are
restored.

DT removeMax () throw (logic_error)

Requirements:
Heap is not empty.

Results:
Removes the data item with the highest priority (the root) from a heap and returns it.
Replaces the root data item with the bottom rightmost data item and moves this data
item downward until the properties that define a heap are restored.

void clear ()

Requirements:
None

Results:
Removes all the data items in a heap.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a heap is empty. Otherwise, returns false.

bool isFull () const

Requirements:
None

Results:
Returns true if a heap is full. Otherwise, returns false.

354 | Laboratory B

void showStructure () const

Requirements:
None

Results:
Outputs the priorities of the data items in a heap in both array and tree form. The tree
is output with its branches oriented from left (root) to right (leaves)—that is, the tree is
output rotated counterclockwise 90 degrees from its conventional orientation. If the
heap is empty, outputs “Empty heap”. Note that this operation is intended for
testing/debugging purposes only.

Heap ADT | 355

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory B: Cover Sheet

Heap ADT | 357

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory B: Prelab Exercise

Heap ADT | 359

Name __ Date _______________________

Section ___

Step 1: Implement the operations in the Heap ADT using an array representation of a heap.
Heaps can be different sizes; therefore, you need to store the maximum number of data
items the heap can hold (maxSize) and the actual number of data items in the heap
(size), along with the heap data items themselves (dataItems). Base your
implementation on the following declarations from the file heap.h. An implementation of
the showStructure operation is given in the file showb.cpp.

const int defMaxHeapSize = 10; // Default maximum heap size

template < class DT >
class Heap
{
public:

// Constructor
Heap (int maxNumber = defMaxHeapSize) throw (bad_alloc);

// Destructor
~Heap ();

// Heap manipulation operations
void insert (const DT &newDataItem) // Insert data item

throw (logic_error);
DT removeMax () throw (logic_error); // Remove max pty data item
void clear (); // Clear heap

// Heap status operations
int isEmpty () const; // Heap is empty
int isFull () const; // Heap is full

// Output the heap structure — used in testing/debugging
void showStructure () const;

private:

// Recursive partner of the showStructure() function
void showSubtree (int index, int level) const;

// Data members
int maxSize, // Maximum number of data items in the

heap
size; // Actual number of data items in the heap

DT *dataItems; // Array containing the heap data items
};

Step 2: Save your implementation of the Heap ADT in the file heap.cpp. Be sure to
document your code.

360 | Laboratory B

Laboratory B: Bridge Exercise

Heap ADT | 361

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program in the file testb.cpp allows you to interactively test your implementation of
the Heap ADT using the following commands.

Command Action

+pty Insert a data item with the specified priority.
— Remove the data item with the highest priority from the heap and output it.
E Report whether the heap is empty.
F Report whether the heap is full.
C Clear the heap.
Q Quit the test program.

Step 1: Prepare a test plan for your implementation of the Heap ADT. Your test plan should cover
heaps of various sizes, including empty, full, and single data item heaps. A test plan form
follows.

Step 2: Execute your test plan. If you discover mistakes in your implementation, correct them
and execute your test plan again.

Test Plan for the Operations in the Heap ADT
Test Case Commands Expected Result Checked

362 | Laboratory B

Laboratory B: In-lab Exercise 1

Heap ADT | 363

Name __ Date _______________________

Section ___

A priority queue is a linear data structure in which the data items are maintained in descending
order based on priority. You can only access the data item at the front of the queue—that is, the
data item with the highest priority—and examining this data item entails removing (dequeuing) it
from the queue.

Priority Queue ADT

Data Items
The data items in a priority queue are of generic type DT. Each data item has a priority that is used
to determine the relative position of the data item within the queue. Data items usually include
additional data. Objects of type DT must supply a function called pty() that returns a data item’s
priority. You must be able to compare priorities using the six basic relational operators.

Structure
The queue data items are stored in descending order based on priority.

Operations
Queue (int maxNumber = defMaxQueueSize)

Requirements:
None

Results:
Constructor. Creates an empty priority queue. Allocates enough memory for a queue containing
maxNumber data items.

~Queue ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store a priority queue.

void enqueue (const DT &newDataItem) throw (logic_error)

Requirements:
Queue is not full.

Results:
Inserts newDataItem into a priority queue.

DT dequeue () throw (logic_error)

Requirements:
Queue is not empty.

Results:
Removes the highest priority (front) data item from a priority queue and returns it.

void clear ()

Requirements:
None

Results:
Removes all the data items in a priority queue.

bool isEmpty () const

Requirements:
None

Results:
Returns true if a priority queue is empty. Otherwise, returns false.

bool isFull () const

Requirements:
None

Results:
Returns true if a priority queue is full. Otherwise, returns false.

You can easily and efficiently implement a priority queue as a heap by using the
Heap ADT insert operation to enqueue data items and the removeMax operation to
dequeue data items. The following declarations from the file ptyqueue.h derive a class
called PtyQueue from the Heap class. If you are unfamiliar with the C++ inheritance
mechanism, read the discussion in Laboratory 4.

364 | Laboratory B

const int defMaxQueueSize = 10; // Default maximum queue size

template < class DT >
class PtyQueue : public Heap<DT>
{
public:

// Constructor
PtyQueue (int maxNumber = defMaxQueueSize);

// Queue manipulation operations
void enqueue (const DT &newDataItem) throw (logic_error);

// Enqueue data data item
DT dequeue () throw (logic_error);

// Dequeue data data item
};

Implementations of the Priority Queue ADT constructor, enqueue, and dequeue
operations are given in the file ptyqueue.cpp. These implementations are very short,
reflecting the close relationship between the Heap ADT and the Priority Queue ADT.
Note that you inherit the remaining operations in the Priority Queue ADT from the
Heap class.

Operating systems commonly use priority queues to regulate access to system
resources such as printers, memory, disks, software, and so forth. Each time a task
requests access to a system resource, the task is placed on the priority queue associated
with that resource. When the task is dequeued, it is granted access to the resource—to
print, store data, and so on.

Suppose you wish to model the flow of tasks through a priority queue having the
following properties:

• One task is dequeued every minute (assuming that there is at least one task waiting
to be dequeued during that minute).

• From zero to two tasks are enqueued every minute, where there is a 50% chance
that no tasks are enqueued, a 25% percent chance that one task is enqueued, and a
25% chance that two tasks are enqueued.

• Each task has a priority value of zero (low) or one (high), where there is an equal
chance of a task having either of these values.

You can simulate the flow of tasks through the queue during a time period n
minutes long using the following algorithm.

Initialize the queue to empty.
for (minute = 0 ; minute < n ; ++minute)
{

If the queue is not empty, then remove the task at the front of the queue.
Compute a random integer k between 0 and 3.
If k is 1, then add one task to the queue. If k is 2, then add two tasks.

Otherwise (if k is 0 or 3), do not add any tasks to the queue. Compute the
priority of each task by generating a random value of 0 or 1.

}

Heap ADT | 365

Step 1: Using the program shell given in the file ossim.cs as a basis, create a program
that uses the Priority Queue ADT to implement the task scheduler described
above. Your program should output the following information about each
task as it is dequeued: the task’s priority, when it was enqueued, and how
long it waited in the queue.

Step 2: Use your program to simulate the flow of tasks through the priority queue
and complete the following table.

Time (minutes) Longest wait for any Longest wait for any
low-priority (0) task high-priority (1) task

10

30

60

Step 3: Is your priority queue task scheduler unfair—that is, given two tasks T1 and T2
of the same priority, where task T1 is enqueued at time N and task T2 is
enqueued at time N + i (i > 0), is task T2 ever dequeued before task T1? If so,
how can you eliminate this problem and make your task scheduler fair?

366 | Laboratory B

Laboratory B: In-lab Exercise 2

Heap ADT | 367

Name __ Date _______________________

Section ___

After removing the root data item, the removeMax operation inserts a new data item at the root
and moves this data item downward until a heap is produced. The following function performs a
similar task, except that the heap it is building is rooted at array entry root and occupies only a
portion of the array.

void moveDown (DT dataItems [], int root, int size)

Input:
The left and right subtrees of the binary tree rooted at root are heaps. Parameter size is the
number of elements in the tree.

Output:
Restores the binary tree rooted at root to a heap by moving dataItems[root] downward until
the tree satisfies the heap property.

In this exercise, you implement an efficient sorting algorithm called heap sort using the
moveDown() function. You first use this function to transform an array into a heap. You then
remove data items one by one from the heap (from the highest priority data item to the lowest)
until you produce a sorted array.

Let’s begin by examining how you transform an unsorted array into a heap. Each leaf of any
binary tree is a one-data item heap. You can build a heap containing three data items from a pair
of sibling leaves by applying the moveDown() function to that pair’s parent. The four single
data item heaps (leaf nodes) in the following tree are transformed by the calls
moveDown(dataItems,1,7) and moveDown(dataItems,2,7) into a pair of three data item
heaps.

27 39

93 82 1864

75 Index Entry

0
1
2
3
4
5
6

75
27
39
93
82
64
18

By repeating this process, you build larger and larger heaps, until you transform the
entire tree (array) into a heap.

// Build successively larger heaps within the array until the
// entire array is a heap.

for (j = (size-1)/2 ; j >= 0 ; j--)
moveDown(dataItems,j,size);

Combining the pair of three-data item heaps shown above using the call
moveDown(dataItems,0,7), for instance, produces the following heap.

Now that you have a heap, you remove data items of decreasing priority from the
heap and gradually construct an array that is sorted in ascending order. The root of the
heap contains the highest-priority data item. If you swap the root with the data item at
the end of the array and use moveDown() to form a new heap, you end up with a heap
containing six data items and a sorted array containing one data item. Performing this
process a second time yields a heap containing five data items and a sorted array
containing two data items.

82 64

27 75 1839

93 Index Entry

0
1
2
3
4
5
6

93
82
64
27
75
39
18

93 64

27 82 1839

75 Index Entry

0
1
2
3
4
5
6

75
93
64
27
82
39
18

368 | Laboratory B

You repeat this process until the heap is gone and a sorted array remains.

// Swap the root data item from each successively smaller heap with
// the last unsorted data item in the array. Restore the heap after
// each exchange.

for (j = size-1 ; j > 0 ; j--)
{

temp = dataItems[j];
dataItems[j] = dataItems[0];
dataItems[0] = temp;
moveDown(dataItems,0,j);

}

A shell containing a heapSort() function comprised of the two loops shown
above is given in the file heapsort.cs.

Step 1: Using your implementation of the removeMax operation as a basis, create an
implementation of the moveDown() function.

Step 2: Add your implementation of the movedown() function to the shell in the file
heapsort.cs thereby completing code needed by the heapSort() function.
Save the result in the file heapsort.cpp.

Step 3: Before testing the resulting heapSort() function using the test program in
the file testbhs.cpp, prepare a test plan for the heapSort() function that
covers arrays of different lengths containing a variety of priority values. Be
sure to include arrays that have multiple data items with the same priority. A
test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of
the moveDown() function, correct them and execute your test plan again.

Index Entry

0
1
2
3
4

5
6

75
39
64
27
18

82
93

Heap

Sorted
array

39 64

27 18

75

Heap ADT | 369

Test Plan for the heapSort Operation
Test Case Array Expected Result Checked

370 | Laboratory B

Laboratory B: In-lab Exercise 3

Heap ADT | 371

Name __ Date _______________________

Section ___

Examining the tree form of a heap rotated 90 degrees counterclockwise from its conventional
orientation can be awkward. Because a heap is a complete tree, an unambiguous representation in
tree form can be generated by outputting the heap level by level, with each level output on a
separate line.

void writeLevels () const

Requirements:
None

Results:
Outputs the data items in a heap in level order, one level per line. Only outputs each data item’s
priority. If the heap is empty, then outputs “Empty heap”.

The tree shown on the first page of this laboratory, for example, yields the following output.

93
82 64
27 75 39 18

Step 1: Implement this operation and add it to the file heap.cpp. A prototype for this operation is
included in the declaration of the Heap class in the file heap.h.

Step 2: Activate the 'W' (write levels) command in the test program in the file testb.cpp by
removing the comment delimiter (and the character 'W') from the lines that begin with
"//W".

Step 3: Prepare a test plan for this operation that covers heaps of various sizes, including empty
and single-data item heaps. A test plan form follows.

Step 4: Execute your test plan. If you discover mistakes in your implementation of the
writeLevels operation, correct them and execute your test plan again.

Test Plan for the writeLevels Operation
Test Case Commands Expected Result Checked

372 | Laboratory B

Laboratory B: Postlab Exercise 1

Heap ADT | 373

Name __ Date _______________________

Section ___

You can use a heap—or a priority queue (In-lab Exercise 1)—to implement both a first-in, first-out
(FIFO) queue and a stack. The trick is to use the order in which data items arrive as the basis for
determining the data items’ priority values.

Part A
How would you assign priority values to data items to produce a FIFO queue?

Part B
How would you assign priority values to data items to produce a stack?

374 | Laboratory B

Laboratory B: Postlab Exercise 2

Heap ADT | 375

Name __ Date _______________________

Section ___

Part A
Given a heap containing 10 data items with distinct priorities, where in the heap can the data item
with the next-to-highest priority be located? Give examples to illustrate your answer.

Part B
Given the same heap as in Part A, where in the heap can the data item with the lowest priority be
located? Give examples to illustrate your answer.

376 | Laboratory B

In this laboratory you will:

Implement a Timer class that you can use to measure
the length time between two events—when a function
starts and when it finishes, for instance

Compare the performance of a set of searching
routines

Compare the performance of a set of sorting routines

Compare the performance of your array and linked list
implementations of the Stack ADT

Performance Evaluation

O
bjectives

Overview

A routine’s performance can be judged in many ways and on many levels. In other
laboratories, you describe performance using order-of-magnitude estimates of a
routine’s execution time. You develop these estimates by analyzing how the routine
performs its task, paying particular attention to how it uses iteration and recursion.
You then express the routine’s projected execution time as a function of the number of
data items (N) that it manipulates as it performs its task. The results are estimates of
the form O(N), O(LogN), and so on.

These order-of-magnitude estimates allow you to group routines based on their
projected performance under different conditions (best case, worst case, and so forth).
As important as these order-of-magnitude estimates are, they are by their very nature
only estimates. They do not take into account factors specific to a particular
environment, such as how a routine is implemented, the type of computer system on
which it is being run, and the kind of data being processed. If you are to accurately
determine how well or poorly a given routine will perform in a particular environment,
you need to evaluate the routine in that environment.

In this laboratory, you measure the performance of a variety of routines. You
begin by developing a set of tools that allow you to measure execution time. Then you
use these tools to measure the execution times of the routines.

You can determine a routine’s execution time in a number of ways. The timings
performed in this laboratory will be generated using the approach summarized below.

Get the current system time (call this startTime).

Execute the routine.

Get the current system time (call this stopTime).

The routine’s execution time = startTime � stopTime.

If the routine executes very rapidly, then the difference between startTime and
stopTime may be too small for your computer system to measure. Should this be the
case, you need to execute the routine several times and divide the length of the
resulting time interval by the number of repetitions, as follows:

Get the current system time (call this startTime).

Execute the routine m times.

Get the current system time (call this stopTime).

The routine’s execution time = (startTime � stopTime) / m.

To use this approach, you must have some method for getting and storing the
“current system time”. How the current system time is defined and how it is accessed
varies from system to system. Two common methods are outlined below.

Method 1
Use a function call to get the amount of processor time that your program (or process)
has used. Typically, the processor time is measured in clock ticks or fractions of a
second. Store this information in a variable of the following type:

typedef long SystemTime;

378 | Laboratory C

You can use this method on most systems. You must use it on multiuser or
multiprocess systems, where the routine you are timing is not the only program
running.

Method 2
Use a function call to get the current time of day. Store this information in a variable
of the following type:

struct SystemTime
{

int hour, // Hour 0-23
minute, // Minute 0-59
second, // Second 0-59
fraction; // Fraction of a second

};

The range of values for the fraction field depends on the resolution of the system
clock. Common ranges are 0–99 (hundredths of a second) and 0–999 (thousandths of a
second). This method is effective only on single-user/single-process systems where the
routine you are timing is the only program running.

In addition to acquiring and storing a point in time, you also need a convenient
mechanism for measuring time intervals. The Timer ADT described below uses the
familiar stopwatch metaphor to describe the timing process.

Start the timer.

...

Stop the timer.

Read the elapsed time.

Timer ADT

Data Items
A pair of times that denote the beginning and end of a time interval.

Structure
None

Operations
void start ()

Requirements
None

Results
Marks the beginning of a time interval (starts the timer).

Performance Evaluation | 379

void stop ()

Requirements
The beginning of a time interval has been marked.

Results
Marks the end of a time interval (stops the timer).

double getElapsedTime ()

Requirements
The beginning and end of a time interval have been marked.

Results
Returns the length of the time interval in seconds.

380 | Laboratory C

Activities
Assigned: Check or
list exercise numbers Completed

Laboratory C: Cover Sheet

Performance Evaluation | 381

Name __ Date _______________________

Section ___

Place a check mark in the Assigned column next to the exercises your instructor has assigned to
you. Attach this cover sheet to the front of the packet of materials you submit following the
laboratory.

Prelab Exercise

Bridge Exercise

In-lab Exercise 1

In-lab Exercise 2

In-lab Exercise 3

Postlab Exercise 1

Postlab Exercise 2

Total

Laboratory C: Prelab Exercise

Performance Evaluation | 383

Name __ Date _______________________

Section ___

Step 1: Select one of the two methods for acquiring and representing a point in time and use this
method to create an implementation of the Timer ADT. Base your implementation on the
following class declaration from the file timer.hs.

// Insert a declaration for SystemTime here.

class Timer
{
public:

// Start and stop the timer
void start ();
void stop ();

// Compute the elapsed time (in seconds)
double getElapsedTime ();

private:

SystemTime startTime, // Time that the timer was started
stopTime; // Time that the timer was stopped

};

Step 2: Add the appropriate declaration for SystemTime to the beginning of the file and save the
resulting header file as timer.h. Save your implementation of the Timer ADT in the file
time.cpp.

Step 3: What is the resolution of your implementation—that is, what is the shortest time interval
it can accurately measure?

Laboratory C: Bridge Exercise

384 | Laboratory C

Name __ Date _______________________

Section ___

Check with your instructor whether you are to complete this exercise prior to your lab period
or during lab.

The test program in the program shell file testc.cs allows you to test the accuracy of your
implementation of the Timer ADT by measuring time intervals of known duration.

#include <iostream>
#include <iomanip>
#include <ctime>

#include “timer.h”

using namespace std;

// wait() is cross platform and works well but is not efficient.
// Feel free to replace it with a routine that works better in
// your environment.
void wait(int secs)
{

int start = clock();
while (clock() - start < CLOCKS_PER_SEC * secs);

}

void main()
{

Timer checkTimer; // Timer
clock_t timeInterval; // Time interval to pause

// Get the time interval.

// Measure the specified time interval.

checkTimer.start(); // Start the timer
// Pause for the specified time interval

checkTimer.stop(); // Stop the timer

cout << “Measured time interval (in seconds) : ”
<< checkTimer.getElapsedTime() << endl;

}

Step 1: Two data items are left incomplete in this program: the call to the function that pauses
the program and the string that prompts the user to enter a time interval. Complete the
program by specifying the name of a “pause” function supported by your system.
Common names for this function include sleep(), delay(), and pause(). Or you can
use the provided wait() function. Add the time unit used by this function to the prompt
string. Save the resulting program as testc.cpp.

Step 2: Prepare a test plan for your implementation of the Timer ADT. Your test plan
should cover intervals of various lengths, including intervals at or near the
resolution of your implementation. A test plan form follows.

Step 3: Execute your test plan. If you discover mistakes in your implementation,
correct them and execute your test plan again.

Test Plan for the Operations in the Timer ADT
Actual Time Period Measured time period

Test Case (in seconds) (in seconds) Checked

Performance Evaluation | 385

Laboratory C: In-lab Exercise 1

386 | Laboratory C

Name __ Date _______________________

Section ___

In this exercise you will examine the performance of the searching routines in the file search.cpp.

Step 1: Use the program in the file timesrch.cpp to measure the execution times of the
linearSearch(), binarySearch(), and unknownSearch() routines. This program
begins by generating an ordered list of integer keys (keyList) and a set of keys to search
for in this list (searchSet). It then measures the amount of time it takes to search for the
keys using the specified routines and computes the average time per search.

The constant numRepetitions controls how many times each search is executed.
Depending on the speed of your system, you may need to use a value of
numRepetitions that differs from the value given in the test program. Before
continuing, check with your instructor regarding what value of numRepetitions you
should use.

Step 2: Complete the following table by measuring the execution times of the linearSearch(),
binarySearch(), and unknownSearch() routines for each of the values of numKeys
listed in the table.

Execution Times of a Set of Searching Routines

Routine Number of keys in the list (numKeys)

1000 2000 4000

linearSearch() O(N)

binarySearch() O(LogN)

unknownSearch() O()

Step 3: Plot your results below.

Step 4: How well do your measured times conform with the order-of-magnitude
estimates given for the linearSearch() and binarySearch() routines?

Step 5: Using the code in the file search.cpp and your measured execution times as a
basis, develop an order-of-magnitude estimate of the execution time of the
unknownSearch() routine. Briefly explain your reasoning behind this
estimate.

1000 2000 3000 4000
Number of keys in the list (numKeys)

S
ea

rc
h

tim
e

(s
ec

on
ds

)

Performance Evaluation | 387

Laboratory C: In-lab Exercise 2

388 | Laboratory C

Name __ Date _______________________

Section ___

In this exercise you will examine the performance of the set of sorting routines in the file sort.cpp.

Step 1: Use the program in the file timesort.cpp to measure the execution times of the
selectionSort(), quickSort(), and unknownSort() routines. This program begins
by generating a list of integer keys (keyList). It then measures the amount of time it
takes to sort this list into ascending order using the specified routine.

The constant numRepetitions controls how many times each search is executed.
Depending on the speed of your system, you may need to use a value of
numRepetitions that differs from the value given in the test program. Before
continuing, check with your instructor regarding what value of numRepetitions you
should use.

Step 2: Complete the following table by measuring the execution times of the
selectionSort(), quickSort(), and unknownSort() routines for each combination
of the three test categories and the three values of numKeys listed in the table.

Execution Times of a Set of Sorting Routines

Routine Number of keys in the list (numKeys)

1000 2000 4000

selectionSort() O(N2)

quickSort() O(NLogN)

unknownSort() O()

Step 3: Plot your results below.

Step 4: How well do your measured times conform with the order-of-magnitude
estimates given for the selectionSort() and quickSort() routines?

Step 5: Using the code in the file sort.cpp and your measured execution times as a
basis, develop an order-of-magnitude estimate of the execution time of the
unknownSort() routine. Briefly explain your reasoning behind this estimate.

1000 2000 3000 4000
Number of keys in the list (numKeys)

S
or

t t
im

e
(s

ec
on

ds
)

Performance Evaluation | 389

Laboratory C: In-lab Exercise 3

390 | Laboratory C

Name __ Date _______________________

Section ___

In this exercise you will measure the performance of the array and linked list implementations of
the Stack ADT that you created in Laboratory 5.

Step 1: Using the implementation of the Timer ADT that you created in the Prelab as a
foundation, write a program that measures the time it takes to completely fill and then
empty a 1000-data item stack using the push and pop operations in Stack ADT. Because
these operations execute so rapidly, you may need to fill and empty the stack a number
of times in order to produce an accurate measurement of the time it takes to complete a
fill/empty cycle.

Step 2: Use your program to measure the time it takes each of your Stack ADT implementations
to fill and empty a stack containing 1000 characters and record the results in the
following table.

Step 3: Repeat these measurements using a stack containing 1000 long integers and record the
results below.

Time to Fill and Empty a 1000-Data Item Stack

Stack ADT implementation Stack data item

char long int

Array implementation

Linked list implementation

Laboratory C: Postlab Exercise 1

Performance Evaluation | 391

Name __ Date _______________________

Section ___

You are given another pair of searching routines. Both routines have order-of-magnitude
execution time estimates of O(N). When you measure the actual execution times of these routines
on a given system using a variety of different data sets, you discover that one routine consistently
executes five times faster than the other. How can both routines be O(N), yet have different
execution times when they are compared using the same system and the same data?

Laboratory C: Postlab Exercise 2

Performance Evaluation | 393

Name __ Date _______________________

Section ___

Using your measurements from In-lab Exercises 1 and 2 as a basis, estimate the execution times of
the routines listed below for a randomly generated list of 8000 integer keys. Do not measure the
actual execution times of these routines using a list of this size. Estimate what their execution
times will be based on the measurements you have already done. Briefly explain your reasoning
behind each estimate.

linearSearch() Estimated execution time:

Explanation:

binarySearch() Estimated execution time:

Explanation:

selectionSort() Estimated execution time:

Explanation:

quickSort() Estimated execution time:

Explanation:

394 | Laboratory C

Program validation is a very important topic. Much time is wasted because of
mistakes on the part of system analysts and programmers. Many of these involve faulty
assumptions. The ensuing errors are hard to detect because we often believe to be
clearly true something that we have never actually verified. Even worse, we are
frequently unaware that we are even making these assumptions. We consequently don’t
even consider whether or not they might be false. Trying to prove that an entire
program is correct is a very complicated formal process that is well beyond the scope of
this laboratory book. However, C++ does support two mechanisms—exceptions and
assertions—that can be used to validate beliefs at specific points in a program.
Including extra statements in your program to validate assumptions may appear to be a
lot of effort, but the first time your program triggers an exception or assertion and
shows you that something you believed to be absolutely true is in fact false, you will
have just saved yourself a tremendous amount of wasted time.

Exceptions
What is an exception? An exception is something you are not expecting to happen. As
people we deal with exceptions everyday. For instance, getting into a car accident
could be considered a major real-life exception. Hopefully you will never be in a car
accident, but if you are, you will likely be very glad that you have insurance and that
the people who designed your car included an airbag. When programming, we need to
be aware that unexpected events can take place in our programs. The user could type a
number when your program expected a letter. You might inadvertently try to allocate
more memory than your computer has available. An aardvark might have chewed
through your network cable. Any number of ridiculously almost random events could
happen to your poor helpless program. You must prepare it. Exceptions allow you to
protect you program, to tell it, “This shouldn’t happen, but just in case it does . . . ”

To give you an example from the Logbook ADT—Lab 1—consider what happens if
the Logbook constructor is told that it is to initialize the object for month 13, �8, or

Program Validation
in C++

anything outside of the standard range of months 1 through 12. How should the
constructor handle the problem?

• It could go ahead and set the variable logMonth to the invalid value, but then
everything else goes crazy. If asked to enter information for day 31, should the
logbook object complain about an invalid day or not? If asked to print the logbook
for the month, how many days does it print? This is reminiscent of the joke about
a proposed operating system error message: “File not found. Fake it?” Trying
“Number of days in month not known. Wing it?” is not an acceptable solution.

• The function could issue the return command to send a warning message to the
calling function. This might seem attractive, but there are a number of problems
with this. How does a void function indicate to the caller that a problem arose?
How does a function with a non-void return value indicate that the returned
value indicates an error situation rather than being valid data? For these and more
reasons, using return to signal an error does not work well as a general-purpose
solution.

• The function could halt the program. This is a radical solution that does not give
any other part of the program a chance to try dealing with the problem. Some
other part of the program might be able to deal sensibly with the problem, but it
never gets a chance. Using the logbook example again, maybe the bad month
came from user input. It seems that instead of being forced to halt, it would be
better to let the program report the error to the user and ask the user to enter a
valid month.

• The program could use exceptions. None of the other approaches to the problem
has been very satisfactory, so exceptions became the preferred way for
programmers to deal with unexpected error situations.

Many of these situations occur when the code calling a function fails to meet the
function’s requirements/preconditions. An empty list should not be asked to return the
data marked by the cursor. A full list should not be asked to accept more data. The
data structure functions should never be called in those situations and should
theoretically never have to deal with the problem, but the reality is that functions will
get called without proper checking of requirements. So data structures must deal with
the possibility of being asked to do unreasonable things.

How do you use exceptions? The basic explanation is simple. When you reach a
situation in your code where the function detects a problem that it doesn’t have a good
way of fixing, you throw an exception. Throwing an exception—also called raising an
exception—is the expression used to say that you are telling the program that the local
code has encountered a problem so serious that it cannot solve the problem and does
not know what to do. Either the calling function, or one of that function’s callers, is
invited to deal with the problem. Following are the steps for using exceptions in your
data structure.

• Include <stdexcept> and <new> in your C++ program file.
• When your code discovers one of these locally irresolvable problems, throw an

exception. The generic syntax is

if (condition) throw exception_object;

where exception_object will be one of the standard exceptions defined in
<stdexcept>. In this lab book, we are using the exception classes

396 | Appendix 1

• logic_error(“string exception description”): used to indicate a situation that
violates program logic. The code in the program that deals with the exception
can access the string and use it to improve error messages and interaction with
the user.

• bad_alloc: used to report a memory allocation failure.
• In the Logbook constructor example, you can deal with an invalid month by

writing

if (month < 1 || month > 12)
throw logic_error(“month not in valid range”);

There are many other exception classes, but we will not be using them in this
book.

• The last step is to declare that the function throws an exception and which
exceptions it may throw. This should be done in both the class declaration file—
e.g., logbook.h—and in the class definition file—e.g., logbook.cpp. The syntax is the
same for both cases. The Logbook constructor declaration with exception
declaration is

Logbook (int month, int year) throw (logic_error);

When implementing a data structure, throwing an exception as shown above is all that
you generally have to do. In the class client code—the code that makes use of the
class—you have the choice of whether or not to deal with the exception. If a triggered
exception is not dealt with anywhere, then the program is aborted and halts. To deal
with an exception, you need a try block and a catch block. A code block is a set of
statements joined by a pair of braces—‘{’ and ‘}’—into one statement set.

• The try block is used when you are about to call a function that you know may
throw an exception. Consider the example of calling the Logbook getEntry()
function. You should always take steps to verify that the function parameter meets
the requirements, and that is probably enough for something simple like
getEntry(). Or, you could be more cautious and try calling getEntry() from
within a try block as follows.

try
{

sampleLog.getEntry(userSpecifiedDate);
}

• Catch blocks are placed immediately after a try block and are used to specify what
to do if the called function does throw an exception. You can either have a catch
block set up to catch a specific exception or you can have a general purpose catch
block that will catch any exception raised within the preceding try block. For
instance, to catch the logic_error exception thrown by getEntry(), you would
write something like the following code.

catch (logic_error &e) // e stands for “exception”
{

cout << “The date you gave me is not valid for month ”
<< sampleLog.getMonth() << endl;

. . . // Possibly do more to recover from the error
}

Program Validation in C++ | 397

To catch any error that occurs within the previous try block, you can use a generic
catch block like the following.

catch (...) // The ‘...’ catches all exception that occur
{

cout << “The date you gave me is not valid for month ”
<< sampleLog.getMonth() << endl;

. . . // Possibly do more to recover from the error
}

You can have multiple catch blocks after a try block. You are in effect overloading
the catch block based on the type of the error object thrown.

To summarize what is happening in the previous example, with the try statement we
are saying to the compiler, “Watch this code. Look for any exceptions that might occur
here.” This signals the compiler that exceptions might occur and that we want to do
something about them. The throw statement is used to induce an exception. The catch
statement that follows the try block tells the compiler what to do if an exception
occurs. If we did not have the catch statement in place the exception would be handled
by the default handler, which aborts the program.

Until now we have been referring to exceptions as nebulous entities. But what is
an exception? C++ allows you to throw any valid data type as an exception. Thus, an
exception is just a variable. In the previous example we threw exception objects that
are defined in the <stdexcept> header file. However, we could just as well throw an
int. C++ then allows you to specify the type of exception that your catch statement
will handle. For instance, the following code would catch an exception of type int:

catch (int e)
{

cout << “This is definitely an exception of type int. It’s value is:”
<< e << endl;

}

The difficulty with throwing exceptions using standard C++ types is that the
distinction between different errors within a function is arbitrary. Throwing unique
integer values for each type of exception is a workable method for dealing with them.
However, keeping track of all the different values that are used to identify the
exceptions is a bit of a pain. A better approach is to define a distinct class type for
each exception that can occur. This allows the data types themselves to serve as
identifiers for the type of exception that has occurred. For the purpose of simplicity in
the code in this book, we do not derive exceptions from their base classes.

Note that the discussion above presents a simplified model of how to work with
exceptions. It allows us to introduce you to exceptions without being too confusing,
and it is sufficient for the purposes of this laboratory book but is by no means
complete.

Assertions
The C++ assert statement can be extremely useful during the program development
phase. You use it to assert that, at a particular point in your program, something is
true. If you are correct, the program continues after checking the assertion—no harm
done. However, if you are incorrect, the program stops running and prints a message

398 | Appendix 1

on the screen showing the assertion that failed and providing the file name and line
number in the source code where that assertion occurs.

The syntax details for using assertions are as follows:

• Include the assertion header file by typing

#include <cassert>

with the other header file inclusion statements.
• Whenever there is something that you believe ought to be true and that you would

really want to know about if that belief turned out to be false, type in

assert (bool expression);

For instance, if you believe that a variable—call it temperature—has a value in a
certain range at this point in your program, you could type

assert (temperature >= 80 && temperature <= 90);

If this turns out to be false when the running program encounters this statement,
the program will halt with a message similar to the following:

weather.exe: main.cpp:9: int main (...):
Assertion ‘temperature >= 80 && temperature <= 90’ failed.
Aborted

Most compilers automatically strip assertions out of the program for distributed
production versions of the program. This happens for a number of reasons: Assertions
can slow down a program, or they can increase the program size. Also, the end user is
often not in a good position to interpret or act on the messages displayed by
assert(). Finally, it completely halts the running program. Assertions are extremely
useful to developers, but they are also best encountered by the developers, not end
users.

Program Validation in C++ | 399

In our programming experiences we have found that it is often very difficult to find
good reference material specifically related to C++ I/O. Rather than pointing a finger
toward the library or vaguely gesturing at the Internet, both of which are excellent
sources, we have included some reference material that we hope will help you work
through the labs in this book. The following is a summary of the standard C++ input
and output functions.

I/O Stream State Functions
Method Returns

rdstate() The stream state (state)

good() Nonzero if state is zero; otherwise, returns zero

eof() Nonzero if eofbit is set; otherwise, returns zero

fail() Nonzero if failbit is set; otherwise, returns zero

bad() Nonzero if badbit is set; otherwise, returns zero

clear() Clears the input status flags (including EOF)

Notes ios States
In the class ios: the state variable tracks success/problems in our I/O as follows:

class ios {
public:

...
enum io_state {

goodbit = 0x00, // ok -- no bit is set
eofbit = 0x01, // set = eof
failbit = 0x02, // last I/O operation failed
badbit = 0x04, // set = invalid operation
hardfail = 0x80 // set = unrecoverable error

};
};

A Summary of C++ I/O

A quick way to check whether the status variable for a stream is set to 0 (no flags
active) is to say:

if (cin) // input OK?
{

whatever ...
}

This works because the ios class does some funky operator overloading to return the
value of the status variable whenever the name of the stream is used like this in an
expression.

The value of eof() is not set until a read attempt has been made, so correct usage
would be something like:

int i;

cin >> i;
while(!cin.eof())
{

cout << i << endl;
cin >> i;

}

Operations Available for Opening Files and Streams
Name Purpose

in Open for reading

out Open for writing

ate Open and move to end-of-stream (AT End)

app Open for appending

trunc Discard stream if it already exists

nocreate If stream doesn’t exist, open fails

noreplace If stream exists, open for output fails unless ate or app is set

binary Open as a binary stream

Notes on File Properties
These are used via the class constructor in two primary ways:

1. When declaring the variable: fstream var_name(char *name, long flags)

(e.g., fstream my_in_stream(“c:\\junk.dat”, ios::in | ios::binary))

2. First declaring the variable: ofstream my_out_stream; and then passing the
parameters above to the stream open() function.

Another set of useful I/O member functions are for determining/setting your
position within a file. The parameters for the second options to seek are ios::beg

402 | Appendix 2

(seek relative to the beginning of the file), ios::cur (relative to current pos), and
ios::end (relative to end of file).

Flags for Formatting Stream Data used with stream.setf(options)
Name Purpose

skipws Skip white space

left Left justify

right Right justify

internal Do padding after sign or base flag

dec Decimal base

oct Octal base

hex Hexadecimal

showbase Show base indicator along with data

showpoint Print trailing zeros in FP numbers

uppercase Use uppercase letters for hex output

showpos Show positive indicator (‘+’) with positive integers

scientific Use scientific notation when displaying floating-point numbers

fixed Use fixed notation for floating-point display

unitbuf Flush any stream after write

stdio Flush standard output and std error after write

Useful Stream Methods
Method Purpose

flags() Returns a long, which indicates the
format flags

flags(long) Set format flags to the value passed
in and return old flags

setf(long) Set specified flags and return old
flags

setf(ios::dec, ios::basefield) Set integer base to decimal and
return old flags

setf(ios::oct, ios::basefield) Set integer base to octal and return
old flags

setf(ios::hex, ios::basefield) Set integer base to hex and return
old flags

setf(ios::left, ios::adjustfield) Set left justfication and return old
flags

setf(ios::right, ios::adjustfield) Set right justfication and return old
flags

A Summary of C++ I/O | 403

Method Purpose

setf(ios::internal, ios::internal) Put fill char between sign and value
and return old flags

setf(ios::scientific, ios::flatfield) Set scientific notation and return
the old flags

setf(ios::fixed, ios::floatfield) Set fixed notation and return the
old flags

setf(0, ios::floatfield) Set default notation and return the
old flags

unsetf(long) Clear specified flags and return the
old flags

Manipulators: Used with Overloaded Input/Output operators >> and <<
Manipulator Stream Purpose

endl ostream Write newline and flush stream

ends ostream Write null terminator in string

flush ostream Flush output stream

ws istream Skip white space

dec ios Read/write integers in decimal

oct ios Read/write integers in octal

hex ios Read/write integers in hexadecimal

setbase(int n) ostream Set integer base to n (0 means default)

setfill(int c) ostream Set fill character to c (for padding out fields
when we have specified a field width)

setprecision(int n) ios Set precision to n

setw(int n) ios Set field width to n

setiosflags(long) ios Set specified format bits

(e.g., setiosflags(ios::showbase |
ios::uppercase))

resetiosflags(long) ios Clear specified format bits (turn them off)

404 | Appendix 2

Methods to Read, Set, and Clear the Format Flag
Name Behavior

width() Return field width

width(int) Set field width to int and return old width (width reverts to 0
after the next number of string is written)

fill() Return the fill character

fill(char) Change the fill character and return the old fill char

precision() Return the precision (num digits in floating-point precision)

precision(int) Set precision and return old value

Other Miscellaneous Methods

tie(out) Ties a stream’s activities so that out is flushed whenever
input is tried by the stream that tied to out.

ios::sync_with_stdio() Synchronizes C++ I/O with the standard C I/O functions;
do this any time you mix usage of both libraries when
doing I/O.

A Summary of C++ I/O | 405

406 | Appendix 2

H
ig

he
r-

le
ve

l M
et

ho
ds

is
tr
ea
m&
 g
et
(s
ig
ne
d
ch
ar
*,
 i
nt
,
ch
ar
 s
to
p_
ch
ar
)

Re
ad

s
ch

ar
ac

te
rs

 in
to

 b
uf

fe
r

po
in

te
d

to
 b

y
1s

t
pa

ra
m

, u
nt

il
re

ac
h
st
op
_c
ha
r

in
 in

pu
t

or
 h

av
e

fi
lle

d
bu

ff
er

 (m
ax

 c
ha

r
to

 p
ut

 in
 b

uf
fe

r
sp

ec
if

ie
d

by
 p

ar
am

 #
2

�
1)

. A
n

‘\0
’ i

s
pl

ac
ed

 in
 t

he
af

te
r

al
l o

th
er

 d
at

a
in

 t
he

 b
uf

fe
r.

Th
e
st
op
_c
ha
r

is
 n

ot
 p

la
ce

d
in

 t
he

 b
uf

fe
r

an
d

is
 le

ft
 in

 t
he

in
pu

t
st

re
am

.

is
tr
ea
m&
 g
et
(
si
gn
ed
 c
ha
r*
,
in
t
)

D
ef

au
lt
st
op
_c
ha
r

is
 ‘\

n’
.

is
tr
ea
m&
 g
et
(
si
gn
ed
 c
ha
r&
)

Re
ad

 a
 s

in
gl

e
ch

ar
ac

te
r

in
to

 v
ar

ia
bl

e.
 R

ea
ds

 a
ny

/a
ll

ch
ar

ac
te

rs
.

in
t
ge
t(
)

N
ex

t
ch

ar
ac

te
r

in
 s

tr
ea

m
. I

f
no

th
in

g
le

ft
, r

et
ur

ns
 E

O
F.

is
tr
ea
m&
 r
ea
d(
 s
ig
ne
d
ch
ar
*,
 i
nt
)

Li
ke

 g
et

, e
xc

ep
t

th
at

 t
he

re
 is

 n
o

te
rm

in
at

or
 c

ha
ra

ct
er

 a
nd

 n
o

st
ri

ng
 t

er
m

in
at

or
 (‘

\0
’)

pl
ac

ed
 in

ar
ra

y.

in
t
gc
ou
nt
()

Re
tu

rn
s

th
e

nu
m

be
r

of
 c

ha
ra

ct
er

s
re

ad
 b

y
th

e
la

st
 r

ea
d

re
qu

es
t.

in
t
pe
ek
()

Re
tu

rn
s

in
fo

rm
at

io
n

ab
ou

t
th

e
ne

xt
 c

ha
ra

ct
er

 f
ro

m
 t

he
 s

tr
ea

m
 b

ut
 d

oe
sn

’t
re

m
ov

e
it

fr
om

 t
he

st
re

am
.

is
tr
ea
m&
 p
ut
ba
ck
(
ch
ar
)

D
oe

s
an

 ‘u
ng

et
’ o

n
a

ch
ar

ac
te

r
an

d
pu

ts
 it

 b
ac

k
in

to
 t

he
 in

pu
t

st
re

am
 t

o
be

 r
er

ea
d

by
 n

ex
t

re
qu

es
t.

is
tr
ea
m&
 i
gn
or
e(
 i
nt
 c
ou
nt
 =
 1
,
in
t
st
op
 =
 E
OF
)

Re
m

ov
es

 c
ou

nt
 c

ha
rs

 f
ro

m
 s

tr
ea

m
 o

r
al

l c
ha

rs
 u

p
to

 s
to

p,
 w

hi
ch

ev
er

 is
 f

ir
st

.

is
tr
ea
m&
 i
gn
or
e(
 i
nt
 c
ou
nt
 =
 1
,
in
t
st
op
 =
 E
OF
)

Re
m

ov
es

 c
ou

nt
 c

ha
rs

 f
ro

m
 s

tr
ea

m
 o

r
al

l c
ha

rs
 u

p
to

 s
to

p,
 w

hi
ch

ev
er

 is
 f

ir
st

.

is
tr
ea
m&
 p
ut
ba
ck
(
ch
ar
)

D
oe

s
an

 ‘u
ng

et
’ o

n
a

ch
ar

ac
te

r
an

d
pu

ts
 it

 b
ac

k
in

to
 t

he
 in

pu
t

st
re

am
 t

o
be

 r
er

ea
d

by
 n

ex
t

re
qu

es
t.

is
tr
ea
m&
 s
ee
kg
(
st
re
am
of
f
of
fs
et
,
se
ek
_d
ir
 d
ir
)

Se
t

re
ad

in
g

po
si

tio
n

w
ith

in
 in

pu
t

st
re

am
, o

ff
se
t

is
 t

he
 b

yt
e

co
un

t
of

 t
he

 o
ff

se
t,

an
d
di
r

sp
ec

if
ie

s
fr

om
 w

he
re

 (b
eg

fr
om

 b
eg

in
ni

ng
 o

f
st

re
am

, c
ur

fr
om

 c
ur

re
nt

 p
os

iti
on

, a
nd

 e
nd

fr
om

en
d

of
 s

tr
ea

m
).

Th
e

fi
le

 s
ho

ul
d

be
 o

pe
ne

d
in

 b
in

ar
y

m
od

e
w

he
n

yo
u

us
e

th
is

 f
or

m
 o

f
th

e
co

m
m

an
d.

is
tr
ea
m&
 s
ee
kg
(
st
re
am
po
s
po
s
)

Se
t

re
ad

in
g

po
si

tio
n

to
 p

os
iti

on
 p
os

in
 f

ile
. Y

ou
 d

o
no

t
ha

ve
 t

o
be

 in
 b

in
ar

y
m

od
e

to
 u

se
 t

hi
s.

st
re
am
po
s
te
ll
g(
)

Re
tu

rn
s

th
e

lo
ca

tio
n

in
 t

he
 in

pu
t

st
re

am
.

os
tr
ea
m&
 p
ut
(
ch
ar
)

Pl
ac

e
th

e
ch

ar
ac

te
r

in
 t

he
 o

ut
pu

t
st

re
am

.

os
tr
ea
m&
 w
ri
te
(
si
gn
ed
 c
ha
r*
 b
uf
,
in
t
co
un
t
)

Co
un

t
by

te
s

fr
om

 b
uf

fe
r

to
 o

ut
pu

t
st

re
am

.

os
tr
ea
m&
 s
ee
kp
(
st
re
am
of
f,
 s
ee
k_
di
r
)

Se
ek
g

ex
ce

pt
 u

se
d

fo
r

ou
tp

ut
 s

tr
ea

m
s

in
st

ea
d

of
 in

pu
t

st
re

am
s.

os
tr
ea
m&
 s
ee
kp
(
st
re
am
po
s
)

Li
ke

 s
in

gl
e-

ar
gu

m
en

t
ve

rs
io

n
of

 s
ee
kg

ex
ce

pt
 u

se
d

w
ith

 o
ut

pu
t

st
re

am
s.

os
tr
ea
m&
 t
el
lp
()

Re
tu

rn
s

th
e

lo
ca

tio
n

in
 t

he
 o

ut
pu

t
st

re
am

.

os
tr
ea
m&
 f
lu
sh
()

Fl
us

he
s

th
e

bu
ff

er
—

fo
rc

es
 s

tr
ea

m
 t

o
ac

tu
al

ly
 w

ri
te

 o
ut

 w
ha

te
ve

r
is

 in
 t

he
 b

uf
fe

r.

Notes on Functions that Return istream
All the functions of form istream& function() can be used in expressions because
the return value gets cast to a zero-value upon failure, or non-zero if the function was
successful. This also generally applies to any other functions that return stream
pointers (ifstream, ofstream, etc.).

Notes on fstream-Specific Functions
The constructor is fstreambase(const char* filename, int mode, int
protection = filebuf::openprot). The mode is specified by or’ing ios mode bits
together (e.g., ios::out | ios::app). The protection specifier is usually not
specified, so the default value gets used. If the name at least is declared, then the file
stream gets opened when it is declared. You would declare a variable to be of type
ifstream (input file stream), ofstream (output file stream), or just fstream (input,
output, or both), and you can optionally specify the constructor parameters (at
declaration time).

If those parameters are not specified when the variable is declared, then the file
can be explicitly opened later by using the open() member function. The parameters
for open() are the same as those specified above, and it is used something like
fin.open(name). The default for ifstream is to open the files in text input mode
(ofstream opens in text output mode), so if that’s what you want you can just go with
the default.

There is much more that could be said about these functions, but this will serve as
a useful quick reference document for you.

A Summary of C++ I/O | 407

A variable can be referenced directly or through one or more levels of indirection: This
is where pointers come in. This is especially important with parameter passing for
functions.

The size of a pointer depends on the architecture: 32-bit architectures have 32-bit
pointers.

& is the unary address operator. It produces the address of its right-hand operand.

* is the unary indirection (or dereferencing) operator. It takes an operand not as a value
to use, but as the address of the value to use. This operator can be stacked (e.g.,
****cptr).

There are three ways to pass arguments in C++:

• Call by value: The value of the operand is placed on the stack and the called
function gets a copy of the value, not the original. The called function doesn’t even
know where the original variable is, so there is no way to modify it. Note: Arrays
are an exception in that the address of the array is passed instead of the value. This
is done for efficiency reasons (and because too many people would keep blowing
the stack by trying to pass too much data around on it).

• Call by reference: Reference arguments are like aliases. To specify that a parameter
is passed by reference, place an ampersand (‘&’) in front of the variable name in the
prototype and function declaration. The compiler takes care of all the work so that
when the variable is used in the local function, the original variable gets updated.
Note: You can create reference variables for use as aliases within a function, not
just as parameters.

• Call by address: The value passed is the address of the data structure we need to
deal with, not the value of the data structure. Consequently, all references to that
data structure will require the dereferencing operator *. Note: An astute observer
may point out that a call by address is actually a call by value in which the value
is a memory address. This is true. We make the distinction here only for sake of
explanation.

Pointers

Using library (and other) functions, you will often see a function declaration that looks
something like the following:

char *func_1(int request, struct *sptr, int &orig)

To use this function, you must understand what parameters the function is expecting.
The first parameter must be passed by value. The second one expects a call by address
with a pointer argument, and all uses of it within the function will use the *
dereferencing operator. The third is a call by reference with reference arguments and
will be treated syntactically like a call by value (no dereferencing or anything—the
compiler takes care of that).

Pointer and Array Equivalence
Pointers and arrays are pretty much interchangeable in C/C++. This is a bit confusing,
but here’s the basic idea:

An array is nothing more than a base address of a series of data items. So if I declare
an array int my_ints[SOME_NUMBER], what I really have is a pointer to the base
address of where the array is located in memory (my_ints is the pointer), knowledge
about the size of each item (in this case sizeof (int)), and an idea of how many
items (SOME_NUMBER) of that data type will have had memory allocated for them by
the compiler. To reference the third item I could type my_ints[2], or I could type
*(my_ints + 2); they are completely equivalent. In the second example we are
doing what is called pointer math. The compiler takes the address of the pointer and
adds 2 * the sizeof int. The basic array indexing scheme is to take the address of the
array pointer (the base address) and add the value index * element_size. This gives
us the offset. So, you see that arrays do not really exist in C/C++, but we can act as
though they do. Multidimension arrays can also be converted to pointers, though that
is a bit more confusing. Consult your textbook for details.

A function parameter int myints[] gets converted to int * const myints, which
is read as myints is a constant pointer to an integer. There are several possible
combinations of const with pointers.

• const int * ptr This is read: ptr is a pointer to a constant integer. This
means that what it points at cannot be changed (the
integer is constant), but the pointer itself can be
changed (it can be set to point at something else,
though it still can’t be used for changing values). Using
this helps avoid accidentally changing data you are
using.

• int * const ptr This is read: ptr is a constant pointer to an integer.
This means that we can change what the pointer is
pointing at (e.g., *ptr = something), but cannot make
the pointer point somewhere else (the pointer is
constant).

• const int * const ptr This is read: ptr is a constant pointer to a constant
integer. We can neither change the data pointed at nor
where the pointer is pointing.

410 | Appendix 3

• int * ptr Just for completeness, ptr is a pointer to integer. Both
the data pointed at and where the pointer points can be
modified.

It is good software engineering practice to give a function only as much access to
data as it absolutely needs. The results are more complicated-looking code, but it can
save tons of time that otherwise would be spent debugging to determine how and
where something was getting magically changed. So if a function uses an array but
doesn’t need to change the data, it would be best passed as const type * ptr, or
even const type * const ptr.

Pointer math: Pointers can be incremented (++) and decremented (--), integers
can be added or subtracted from pointers (+, +=, —, -=) or one pointer may be
subtracted from another. The general rule to remember is that the arithmetic is always
done in terms of the size of the data type pointed at. For example, ptr += 2 means
“change what we are pointing at by 2 * sizeof the data type”; if the datatype is 8 bytes,
then ptr now points 2 * 8 = 16 bytes higher. ptr2 — ptr1 gives you the difference
between the two pointers as a difference between the array index value of ptr2 and
ptr1, so if ptr2 points to array[3] and ptr1 points to array[1], ptr2 — ptr1 =
2 (since the ptr2 points to an element two elements away from ptr1). Pointer math
only makes sense in the context of an array.

C-Strings: C-strings are just pointers to an array of characters. The string end is
calculated by starting at item 0 in the array and moving up through the indexed
characters until a character with the value ‘\0’ is found; that is the end of the string.
Note: There is a big difference between an empty string (the first item in the array has
the value ‘\0’) and a null string (the pointer has the value NULL, or (char *) 0). A
NULL pointer by our definition doesn’t point at any data.

Pointers | 411

	A Laboratory Course in C++ Data Structures 2nd
	Contents
	Preface
	Preface to the Second Edition
	To the Student
	To the Instructor

	1 Logbook ADT
	Overview
	Logbook ADT
	Laboratory 1: Cover Sheet
	Laboratory 1: Prelab Exercise
	Laboratory 1: Bridge Exercise
	Laboratory 1: In- lab Exercise 1
	Laboratory 1: In- lab Exercise 2
	Laboratory 1: In- lab Exercise 3
	Laboratory 1: Postlab Exercise 1
	Laboratory 1: Postlab Exercise 2

	2 Point List ADT
	Overview
	Point List ADT
	Laboratory 2: Cover Sheet
	Laboratory 2: Prelab Exercise
	Laboratory 2: Bridge Exercise
	Laboratory 2: In- lab Exercise 1
	Laboratory 2: In- lab Exercise 2
	Laboratory 2: In- lab Exercise 3
	Laboratory 2: Postlab Exercise 1
	Laboratory 2: Postlab Exercise 2

	3 Array Implementation of the List ADT
	Overview
	List ADT
	Laboratory 3: Cover Sheet
	Laboratory 3: Prelab Exercise
	Laboratory 3: Bridge Exercise
	Laboratory 3: In- lab Exercise 1
	Laboratory 3: In- lab Exercise 2
	Laboratory 3: In- lab Exercise 3
	Laboratory 3: Postlab Exercise 1
	Laboratory 3: Postlab Exercise 2

	4 Ordered List ADT
	Overview
	Ordered List ADT
	Laboratory 4: Cover Sheet
	Laboratory 4: Prelab Exercise
	Laboratory 4: Bridge Exercise
	Laboratory 4: In- lab Exercise 1
	Laboratory 4: In- lab Exercise 2
	Laboratory 4: In- lab Exercise 3
	Laboratory 4: Postlab Exercise 1
	Laboratory 4: Postlab Exercise 2

	5 Stack ADT
	Overview
	Stack ADT
	Laboratory 5: Cover Sheet
	Laboratory 5: Prelab Exercise
	Laboratory 5: Bridge Exercise
	Laboratory 5: In- lab Exercise 1
	Laboratory 5: In- lab Exercise 2
	Laboratory 5: In- lab Exercise 3
	Laboratory 5: Postlab Exercise 1
	Laboratory 5: Postlab Exercise 2

	6 Queue ADT
	Overview
	Queue ADT
	Laboratory 6: Cover Sheet
	Laboratory 6: Prelab Exercise
	Laboratory 6: Bridge Exercise
	Laboratory 6: In- lab Exercise 1
	Laboratory 6: In- lab Exercise 2
	Laboratory 6: In- lab Exercise 3
	Laboratory 6: Postlab Exercise 1
	Laboratory 6: Postlab Exercise 2

	7 Singly Linked List Implementation of the List ADT
	Overview
	List ADT
	Laboratory 7: Cover Sheet
	Laboratory 7: Prelab Exercise
	Laboratory 7: Bridge Exercise
	Laboratory 7: In- lab Exercise 1
	Laboratory 7: In- lab Exercise 2
	Laboratory 7: In- lab Exercise 3
	Laboratory 7: Postlab Exercise 1
	Laboratory 7: Postlab Exercise 2

	8 Copying and Comparing ADTs
	Overview
	Enhanced List ADT
	Laboratory 8: Cover Sheet
	Laboratory 8: Prelab Exercise
	Laboratory 8: Bridge Exercise
	Laboratory 8: In- lab Exercise 1
	Laboratory 8: In- lab Exercise 2
	Laboratory 8: In- lab Exercise 3
	Laboratory 8: Postlab Exercise 1
	Laboratory 8: Postlab Exercise 2

	9 Doubly Linked List Implementation of the List ADT
	Overview
	List ADT
	Laboratory 9: Cover Sheet
	Laboratory 9: Prelab Exercise
	Laboratory 9: Bridge Exercise
	Laboratory 9: In- lab Exercise 1
	Anagram Puzzle ADT
	Laboratory 9: In- lab Exercise 2
	Laboratory 9: In- lab Exercise 3
	Laboratory 9: Postlab Exercise 1
	Laboratory 9: Postlab Exercise 2

	10 Recursion with Linked Lists
	Overview
	Laboratory 10: Cover Sheet
	Laboratory 10: Prelab Exercise
	Laboratory 10: Bridge Exercise
	Laboratory 10: In- lab Exercise 1
	Laboratory 10: In- lab Exercise 2
	Laboratory 10: In- lab Exercise 3
	Laboratory 10: Postlab Exercise 1
	Laboratory 10: Postlab Exercise 2

	11 Binary Search Tree ADT
	Overview
	Binary Search Tree ADT
	Laboratory 11: Cover Sheet
	Laboratory 11: Prelab Exercise
	Laboratory 11: Bridge Exercise
	Laboratory 11: In- lab Exercise 1
	Laboratory 11: In- lab Exercise 1
	Laboratory 11: In- lab Exercise 1
	Laboratory 11: Postlab Exercise 1
	Laboratory 11: Postlab Exercise 2

	12 Expression Tree ADT
	Overview
	Expression Tree ADT
	Laboratory 12: Cover Sheet
	Laboratory 12: Prelab Exercise
	Laboratory 12: Bridge Exercise
	Laboratory 12: In- lab Exercise 1
	Laboratory 12: In- lab Exercise 2
	Laboratory 12: In- lab Exercise 1
	Laboratory 12: Postlab Exercise 1
	Laboratory 12: Postlab Exercise 2

	13 Weighted Graph ADT
	Overview
	Weighted Graph ADT
	Laboratory 13: Cover Sheet
	Laboratory 13: Prelab Exercise
	Laboratory 13: Bridge Exercise
	Laboratory 13: In- lab Exercise 1
	Laboratory 13: In- lab Exercise 2
	Laboratory 13: In- lab Exercise 3
	Laboratory 13: Postlab Exercise 1
	Laboratory 13: Postlab Exercise 2

	14 Hash Table ADT
	Overview
	Hash Table ADT
	Laboratory 14: Cover Sheet
	Laboratory 14: Prelab Exercise
	Laboratory 14: Bridge Exercise
	Laboratory 14: In- lab Exercise 1
	Laboratory 14: In- lab Exercise 2
	Laboratory 14: In- lab Exercise 3
	Laboratory 14: Postlab Exercise 1
	Laboratory 14: Postlab Exercise 2

	A String ADT
	Overview
	String ADT
	Laboratory A: Cover Sheet
	Laboratory A: Prelab Exercise
	Laboratory A: Bridge Exercise
	Laboratory A: In- lab Exercise 1
	Laboratory A: In- lab Exercise 2
	Laboratory A: In- lab Exercise 3
	Laboratory A: Postlab Exercise 1
	Laboratory A: Postlab Exercise 2

	B Heap ADT
	Overview
	Heap ADT
	Laboratory B: Cover Sheet
	Laboratory B: Prelab Exercise
	Laboratory B: Bridge Exercise
	Laboratory B: In- lab Exercise 1
	Priority Queue ADT
	Laboratory B: In- lab Exercise 2
	Laboratory B: In- lab Exercise 3
	Laboratory B: Postlab Exercise 1
	Laboratory B: Postlab Exercise 2

	C Performance Evaluation
	Overview
	Timer ADT
	Laboratory C: Cover Sheet
	Laboratory C: Prelab Exercise
	Laboratory C: Bridge Exercise
	Laboratory C: In- lab Exercise 1
	Laboratory C: In- lab Exercise 2
	Laboratory C: In- lab Exercise 3
	Laboratory C: Postlab Exercise 1
	Laboratory C: Postlab Exercise 2

	Appendix 1 Program Validation in C++
	Appendix 2 A Summary of C++ I/ O
	Appendix 3 Pointers

