Lab 1.1 Black-box and White-box Program Testing

Name:

Lab 1.1 Black-box and
White-box Program Testing

Objective: Lab Exercise 1.1 is related to Chapter 1:
“Software Development” in the text ADTs, Data
Structures, and Problem Solving in C++, 2E and is
intended to help you understand two methods of testing a
program as described in Section 1.4 and to provide a
review of some basic statements and arrays in C++.

’1‘: Text: Read Section 1.4: “Testing, Execution, and Debugging,” starting on page 30 of the text. The
s black-box testing and white-box testing are introduced on page 32.

Description: This exercise demonstrates the difference between black-box and white-box testing. In black-
testing, one simply executes the program with test data without any knowledge of the program’s
nts—the program is said to be a black box because only the externals are available. In white-box
g, one analyzes the program’s structure by looking inside the program and tracing its execution for
bus data sets, selecting them in such a way as to exercise the various paths of program execution.

tk-box Testing

instructor will give you directions on how to access or prepare a binary executable program for
ing a matrix with 3 rows and 3 columns for some number. (A listing of the source program
ch. cpp used to prepare this binary executable is on the last page of this lab exercise.) If you are
ng on some other system, you will need to generate this binary executable yourself, using the source
on the last page. The program searches a 3 x 3 matrix for some number. You are to carry out black-

sting of this program beginning with the matrix

45 77 93
78 79 85
72 96 77

B \ Following the output prompt, enter this test matrix into the program.

e , Search for value 77. What output is produced?

Is this expected? YIN

Search for value 99. What output is produced?

Is this expected? YIN

E.
;
o
-

Lab 1.1 Black-box and White-box Program Testing

E Try searching for other values and/or with another matrix. Try enough values to show that your (
testing has either turned up an error or given you confidence that the program is correct. Record what
inputs you used and the resulting output.

Number entered Found or not found

Is the program correct or incorrect at this point in your estimation?

Correct _. Incorrect

White-box Testing

We are now ready to explore white-box testing. The function being used to search during our black-box
testing is given below (with some additional comments):

bool matrixSearch(Matrix & mat, int n, int item) (

Search the n X n matrix mat in rowwise order for item.

Precondition: Matrix mat is an n X n matrix of integers with n > 0.
Postcondition: True is returned if item is found in mat, else false.

NOTE: mat[row] [col]l denotes the entry of the matrix in the o
(horizontal) row numbered row (counting from 0) and the
(vertical) column numbered col.

___ */
{
bool found; // 1 ’
for (int row = 0; row < n; row++) // 2
for (int col = 0; col < n; col++) // 3
if (mat[row] [col] == item) // 4
found = true; // 5
else // 6
found = false; /77
return found; // 8
}

s Read the code over carefully. Does it appear to you to be correct? YIN

If you think it isn’t and know why it is incorrect, give the reason in the space below:

/
/

Lab 1.1 Black-box and White-box Program Testing

#3[6] There are two general ways to trace code: 1) using a debugger or debugging statements inserted in
the code, and 2) manually (desk checking). Complete the following manual trace using

45 77 93
mat = |78 79 85| and item = 77
72 96 77

The numbers in the column labeled “Statement number” are taken from the inline comments in the
source code formatrixSearch () on the preceding page.

Statement row col mat [row] [col] found
number
1 ? ? ? ? (7 = undefined)
2 ? ? ? ?
3 0 0 45 ?
4,7 0 0 45 false
3 0 1 77 false
4,5 0 1 77 true
3 0 2

Lab 1.1 Black-box and White-box Program Testing

45 77 93 ' (

& Complete the following trace using mat = (78 79 85| and
72 96 77

item = one of the values used earlier to show that the program was incorrect
Statement
= number row ol mat [row] [col] found
s <l
Eoil 1 ? ? ? ? (? = undefined)
L 2 ? ? ? ? ’ |
Ll 3 0 0 - 45 ? |
all 4, 0 0 45
! 3 0 1 77
' 4, 0 1 77
3 0 2
|
H

Hia,

Lab 1.1 Black-box and White-box Program Testing

E We will now try some automated tracing. Using the program search.cpp on the last page of
this handout (downloadable from the website whose URL is given in the preface), add the output
statement highlighted below that displays the state of the loop on each iteration and execute the
program with the values used in your trace tables.

{
if (mat[row][col] == item)
found =:true;
else
found = false;
cerr << row <<" " << col << " "<< mat[row] [col] << "
<< boolalpha << found << endl;
}

After examining the traces produced by the output, it should be clear why the program fails to produce
the correct output. Describe the reason clearly below:

=, E] Once the error is identified, it needs to be corrected. If we replace the function
matrixSearch () with the following, then the program is correct.

bool matrixSearch(Matrix & mat, int n, int item)

{
bool found=false;
for (int row = 0; row < n; row++)
for (int col = 0; col < n; col++)
if (mat[row] [col] == item)
found = true;
return found;
}

Run this corrected version of matrixSearch () and confirm that is correct.

Check here when finished

LN The preceding function matrixSearch () is correct but is not very efficient. It can be easily
modified, however, to produce a better, more efficient, solution to the problem of searching a matrix.
Make this change to the code and explain below why it is more efficient than the earlier version.

You have finished! Hand in: 1) this lab exercise with answers filled in, and 2) printouts of (i) your
final program, (ii) evidence that it compiles correctly, and (iii) an execution using the values you used
to test the original function in the first part of this lab.

R,

B!

/*--- search.cpp it T R
Program to read a 3 X 3 matrix of integers mat and an integer item,
and search mat to see if it contains item.

Add your name here and other info requested by your instructor.

#include <iostream>

using namespace std;

const int SIZE = 3; //Set Matrix size
typedef int Matrix[SIZE][SIZE];

bool matrixSearch(Matrix & mat, int n, int item);
Search the n X n matrix mat in rowwise order for item.

Precondition: Matrix mat is an n X n matrix of integers with n > 0.
Postcondition: True is returned if item is found in mat, else false.

___ */
int main()
{
// Enter the matrix
Matrix mat;
cout << "Enter the elements of the " << SIZE << " X " << SIZE
<< " matrix rowwise:\n";
for (int i = 0; i < SIZE; i++)
for (int j = 0; j < SIZE; j++)
cin >> mat[i][]);
// Search mat for various items
int itemToFind;
char response;
do :
{
cout << "Enter integer to search for: ";
cin >> itemToFind;
if (matrixSearch(mat, SIZE, itemToFind))
cout << "item found\n";
else
cout << "item not found\n";
cout << "\nMore items to search for (Y or N)? ";
cin >> response;
while (response == 'Y' || response == 'y');
//-- (-- Incorrect --) Definition of matrixSearch()
bool matrixSearch(Matrix & mat, int n, int item)
/¥ e
Search the n X n matrix mat in rowwise order for item
Precondition: Matrix mat is an n X n matrix of integers with n > 0.
Postcondition: True is returned if item is found in mat, else false.
NOTE: mat[row] [col] denotes the entry of the matrix in the
(horizontal) row numbered row (counting from 0) and the
(vertical) column numbered col. .
___ */

bool found; :
for (int row = 0; row < n; row++)
for (int col = 0; col < n; col++)

if (mat[row] [col] == item)
found = true;
else

found = false;
return found;

C

